Research Progress on Rapid Optimization Design Methods of Metamaterials Based on Intelligent Algorithms
-
摘要: 目前,超材料研究不断向工程化应用推进,在物理机理与效应、设计理论与方法、加工制备与测试等方面取得了突飞猛进的发展。但是,传统的超材料设计主要依赖人工设计和优化,面对大规模的工程化应用设计时,无法实现数量庞大的超材料结构单元的快速整体设计。近几年,涵盖传统启发式算法和神经网络算法的智能算法在超材料设计中所占的比重逐步上升,基于智能算法设计超材料能够打破传统设计方法在不同基材体系、不同频段以及不同性能指标下设计的局限性,展现出快速设计和架构创新的独特优势。该文综述了包括遗传算法、Hopfield网络算法和深度学习在内的几种典型智能算法在超材料设计中的应用,包括正向设计方法和逆向设计方法。基于智能算法能够实现不同性能指标的频率选择表面、多机理复合吸波超材料、平板聚焦超表面以及异常反射超表面的快速设计,为推动超材料技术的工程化应用提供必要设计手段支撑。Abstract: At present, research on metamaterials is continuously advancing to engineering applications, and great progress is being achieved in the areas of physical mechanisms and effects, design theory and methods, and fabrication and measurement. However, traditional metamaterials design mainly relies on artificial design and optimization. In the face of large-scale engineering applications, it is impossible to realize the rapid overall design of a large number of metamaterial structural units. In recent years, the proportion of intelligent algorithms covering traditional heuristic algorithms and neural network algorithms in metamaterials design has increased gradually. Metamaterials design based on intelligent algorithms can surpass the limitation of traditional methods in different substrate systems, frequency variation, and different performance indicators, offering the unique advantages of rapid design and architectural innovation. This paper summarizes the application of several typical intelligent algorithms, including the genetic algorithm, Hopfield network algorithm, and deep learning algorithm in metamaterials design, which include forward designs and an inverse design. The use of intelligent algorithms can achieve the rapid design of frequency selective surfaces under different performance indexes, multi-mechanisms composite absorber metamaterials, flat focusing, and abnormal reflection metasurfaces, providing the necessary support for design methods while promoting the engineering applications of metamaterials.
-
1. 引言
多目标跟踪一直是目标跟踪领域中的热点和难点问题之一[1-3]。当多个目标的空域分布范围较小且运动特征相近时,多目标跟踪的问题便转化成了群目标跟踪,如分裂的空间碎片[4-6]、飞机编队[7]、迁徙的鸟群和迁飞的昆虫种群等[8]。在群目标跟踪的过程中,雷达视野内的目标个体一般都比较小,并且受限于雷达的分辨率和工作波长,群内个体目标往往是不可分辨的[9]。在这种情况下再试图对群内所有个体进行跟踪是不现实的,而且在某些实际应用中也是不必要的。因此,需要以“群目标”为对象对集群的整体运动趋势进行跟踪。
群目标跟踪的首要环节是航迹起始,具体是指进入稳定跟踪之前的航迹确认过程。群目标的航迹起始,关键步骤在于分群检测和求解等效量测,即所谓的群起始[10]。常用的群起始算法包括k-均值聚类和集群引晶等[11]。k-均值聚类算法需要预先已知集群数量,收敛缓慢,而且性能受噪声的影响较大。集群引晶算法则引入门限值进行判别,不需要已知集群数量,但起始收敛缓慢、计算量大,并且要求的前提条件较为苛刻。文献[10]提出了一种基于群目标几何中心的航迹起始算法,首先根据监视区域内多个目标回波的空间距离进行分群检测预处理,在完成分群检测后再求解每个群目标的几何中心,然后确定该门限区域内的各个目标回波相对于几何中心的权值,并据此构建出等效量测。文献[10]的算法克服了k-均值聚类和集群引晶算法的缺点,但由于其仅利用目标位置加权求解等效量测,适用于群内个体目标回波幅度比较均匀的群目标,当个体目标的回波幅度随机起伏较严重时该方法将不再适用。
事实上,雷达数据录取终端所能提取的目标点迹信息除了空间位置参数外,还包括多普勒和回波幅度等信息,充分利用这些信号层的目标信息辅助雷达数据处理,将有助于提高目标跟踪算法的性能和航迹质量。基于这一思想,本文提出一种回波幅度信息辅助的群目标航迹起始算法。首先综合利用目标位置信息和幅度信息完成分群检测,然后综合采用幅度加权和位置加权求解等效量测,最后基于修正的逻辑法进行群目标的航迹起始。本文方法充分利用了目标的幅度信息,不仅可以在集群数量未知的情况下准确划分群,而且降低了失跟率,提高了跟踪航迹的质量。仿真结果验证了该方法的有效性。
2. 问题描述
不失一般性,本文以迁飞性的昆虫种群为例描述群目标跟踪模型。图1为昆虫种群的空间密度分布情况。如图所示,椭圆区域内的昆虫种群密度较大,这些点的目标回波幅度也比较强,实际情况中要重点对椭圆区域内的目标点迹进行跟踪。本节给出群目标状态模型与观测模型。
2.1 群目标状态模型
群目标与点目标的区别在于群目标占据了一定的空间,需要有一个状态参量对群目标的形状进行刻画。本文将群目标的形状以椭圆形式建模,利用二维对称正定矩阵表示群目标整体形状的扩展状态。群目标的形状可以用式(1)的数学表达式进行刻画[12]
(y−Hjk+1|kxjk)TX−1k(y−Hjk+1|kxjk)=1 (1) 其中,
y 表示椭圆表面上的点,Xk 为一对称正定矩阵,表示目标形状的扩展状态,Hjk+1/k 是量测矩阵,xjk 是群目标运动状态向量,T表示矩阵转置。扩展状态Xk 的演变过程可表示为[13]p[Xk|Xk−1]=W(Xk;δk|k−1,Xk−1/δk|k−1) (2) 其中,
δk|k−1 是一个标量,W(Y;a,C) 为随机矩阵Y的Wishart分布的概率密度函数,定义为W(Y;a,C)=c−1|C|−12a|Y|12(a−d−1)⋅etr(−12C−1Y) (3) 其中,c是归一化因子,a > d–1, etr(·)表示exp(trace(·))。
第
j(j=1,2,···,J) 个群目标的等效量测在二维平面内的运动状态模型为xjk+1=Fjk+1|kxjk+wjk (4) 其中,群目标运动状态向量
xjk=[xjk˙xjkyjk˙yjk]T ,包括第j个群目标在x方向上的位置xk 和速度˙xk ,以及在y方向上的位置yk 和速度˙yk 。状态转移矩阵为Fjk+1|k=I2⊗[1Δt01] (5) 其中,
I2 为二维单位矩阵,⊗ 代表Kronecher积,Δt 为观测间隔。状态噪声wjk∼N(0,Qjk⊗Xjk) ,状态噪声协方差包括运动状态协方差Qjk 和扩展状态Xjk 两部分,表示群目标状态不仅受运动状态的影响,还受扩展状态Xjk 的影响。运动状态协方差矩阵为[14]Qjk=I2⊗qjk[Δt3/3Δt2/2Δt2/2Δt] (6) 其中,
qjk 为状态噪声强度。2.2 群目标观测模型
将雷达在k时刻接收到的观测点迹集合表示为
Zk 。假设雷达位于原点位置并保持静止,Zk={zik}nki=1 表示k时刻的nk 个量测组成的集合。每一个观测向量zk 都包含径向距离rk ,方位角θk 两个位置参量和幅度参量Ak ,即zk=[θkrkAk]T (7) 观测模型为
zik+1=Hik+1|kxik+vik (8) 其中,量测矩阵为
Hik+1|k=I2⊗[100] (9) 量测噪声
vik∼N(0,λXik+Rik) ,其中λ 为一个标量,以描述扩展状态Xik 的作用大小。Rik 为真实量测噪声协方差,即Rik=[σ2θ00σ2r] (10) 其中,方位角
θk 观测噪声方差为σ2θ ;径向距离rk 的观测噪声方差为σ2r 。在运动状态参量xk 和群目标形状参量Xk 相互独立的条件下,群目标状态的似然函数可表示为[15,16]p[Zk|nk,xk,Xk]∝N(zk;Hk+1|kxk,Xk/nk)⋅W(Zk;nk−1,Xk) (11) 3. 幅度信息辅助的群目标航迹起始方法
本部分首先利用聚类算法完成分群检测,然后通过群内目标幅度加权和距离加权求解等效量测,最后利用等效量测起始航迹。具体算法流程如图2所示。
3.1 分群检测
首先设定目标幅度门限,大于门限的幅值点的个数为集群数量的初始估计L,通过k-均值聚类算法得到子群数据和子群中心
Olk ,完成粗划分群。定义
k 时刻l 个子群中心与第j 个子群中心的距离为[17-19]ΔRlj[Olk,Ojk]=|Olk−Ojk| (12) 那么,子群中心之间的空间距离判别矩阵为
Slj=[0δ12···δ1Lδ210···δ2L⋮⋮⋱⋮δL1δL2···0]L×L (13) 其中
δlj={0,ΔRlj[Olk,Ojk]<M1,ΔRlj[Olk,Ojk]>M (14) 其中,M为子群的距离门限。由于
ΔRlj[Olk,Ojk]= ΔRjl[Ojk,Olk] ,即δlj=δjl ,所以判别矩阵为上三角矩阵。判别矩阵元素为0对应的两个子群合并,并得到精确的集群数量,然后再次通过k-均值聚类算法精确划分子群,并求出子群中心,从而完成分群检测。具体的算法流程如图3所示。可见,分群检测大大减少了整体航迹的数量,降低了计算机的存储量和计算负担。3.2 等效量测形成
分群检测之后,采取距离加权和幅度加权的方法求解群目标的等效量测。对于第i个子群中心,群内第
i 个量测的距离权值为ηik=Ri−ˉRn∑i=1(Ri−ˉR) (15) 第
i 个量测的幅度权值为μik=Ain∑i=1Ai (16) 那么等效量测可表示为
zek=n∑i=1(αAin∑i=1Ai+βRi−ˉRn∑i=1(Ri−ˉR))zik (17) 其中,
Ai 和Ri 分别为群内第i个目标的幅度值和距离值,ˉR 为集群中心的距离值,zik 为第i 个原始量测,α 和β 分别为幅度和距离的权重,并且α+β=1 。3.3 航迹起始
航迹起始采用修正的逻辑法[20]进行,具体步骤如下:
步骤1 用第1次扫描求得的群目标等效量测为航迹根节点,用目标最大速度建立初始相关波门,对落入相关波门的第2次扫描得到的等效量测建立可能航迹;
步骤2 对每个航迹进行外推,以外推点为中心,后续相关波门的大小通过航迹外推误差协方差计算得到,将落入波门内的等效量测与外推点进行关联;
步骤3 如果后续的波门内没有等效量测,则删除此航迹,继续步骤2,直到形成稳定的航迹。
4. 仿真实验与结果分析
3个群目标分别为随机生成的100个高斯分布的点迹集合,其中心位置均值分别为p1=[55000 m, 55000 m], p2=[53500 m, 53500 m], p3=[52000 m, 52000 m],群中目标点迹幅度的概率密度函数服从莱斯分布[8]。子群之间的距离门限为1550 m,航迹起始门限为4。仿真实验分别从分群检测、求解等效量测和航迹起始成功率等方面进行对比。为了计算航迹起始的成功率,对每条已起始条航迹求其后5个周期内的群目标中心位置估计均方根误差(Root Mean Square Error, RMSE),如果RMSE小于100 m即为航迹起始成功,如果大于100 m则判定为不成功。目标j位置估计的均方根误差定义为
σjr=√1NN∑i=1(xj,ik|k−xjk)2+1NN∑i=1(yj,ik|k−yjk)2 (18) 其中,
(xjk,yjk) 为k 时刻目标j的真实位置,(xj,ik|k,yj,ik|k) 为第i次Monte-Carlo实验目标j的位置估计值,N为Monte-Carlo实验次数,这里N 取为500。图4为量测空间点迹的分布图。从图中可以看出3个间距较近的集群,群内部没有固定的几何结构。图5为仅利用位置信息分群后的态势图,利用k-均值聚类算法后得到5个集群。图6为利用幅度信息辅助后再次分群的态势图,其中幅度权值
α=0.2 和距离β=0.8 。由图可知分群后得到3个群,很明显幅度在分群过程中起到了关键作用。图7为幅度距离加权形成的等效量测与群几何中心为等效量测的对比图,二者空间位置有明显的差别,这对后续是否能够稳定跟踪有很大影响。面向工程应用的一个实际问题是幅度、距离权值的分配问题。针对不同的幅值观测场景,设置恰当的权值比例将有利于正确起始航迹和稳定跟踪。图8为以种群1为例,不同权值比例形成的等效量测航迹起始对比图,另外两个种群的对比结果相似,这里予以省略。从图8中可以看出,当幅度权值较大时,航迹明显偏离种群1整体的空间位置。这是因为量测幅值个别点有较大差异,在幅度未知的条件下求解等效量测,会对幅度权值依赖过多,将有可能导致目标航迹偏离真实航迹,从而影响后续的稳定跟踪。可见幅度的权重不能太大,实际中应该以距离权重为主,幅度权重为辅。表1对比了幅度、距离权值不同时航迹起始的成功率。针对本文的仿真场景,幅度权值为0.2,距离权值为0.8的情况下,航迹起始成功率最高。而幅度权值为0.8,距离权值为0.2时,航迹起始成功率只有80%。当幅度权值为0.1,距离权值为0.9时,由于求解等效量测幅度作用小,导致此时等效量测不准确,航迹起始成功率反而低一些。因此在实际工程应用中还需根据观测场景,来合理分配二者的权值。
表 1 幅度、距离不同权值下航迹起始成功率Table 1. The success rate of track start under different weights of amplitude and distanceα=0.8,β=0.2 α=0.5,β=0.5 α=0.2,β=0.8 α=0.1,β=0.9 α=0,β=1.0 航迹起始成功率(%) 80 93 98 95 89 5. 结束语
传统的群目标航迹起始算法仅利用目标的位置信息完成分群检测和求解等效量测,存在分群检测不理想,等效量测求解不准确等问题。针对此问题,本文提出了一种幅度信息辅助的群目标航迹起始方法。该方法综合利用目标的位置和幅度信息,可以在集群数量未知的情况下完成分群检测,并利用目标距离和幅度加权求解每个群目标的等效量测,最终实现群目标的稳定航迹起始。该方法相对于仅利用位置信息的航迹起始方法,起始成功率更高,更利于后续的目标跟踪。
-
-
[1] PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700): 1353–1355. doi: 10.1126/science.1104467 [2] PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773–4776. doi: 10.1103/PhysRevLett.76.4773 [3] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084. doi: 10.1109/22.798002 [4] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184–4187. doi: 10.1103/PhysRevLett.84.4184 [5] CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5(11): e16172. [6] XIE Boyang, TANG Kun, CHENG Hua, et al. Coding acoustic metasurfaces[J]. Advanced Materials, 2017, 29(6): 1603507. doi: 10.1002/adma.201603507 [7] 史峰, 王辉, 郁磊, 等. MATLAB智能算法30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011.SHI Feng, WANG Hui, YU Lei, et al. Analysis of 30 Cases of MATLAB Intelligent Algorithm[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2011. [8] 武飞周, 薛源. 智能算法综述[J]. 工程地质计算机应用, 2005, (2): 9–15.WU Feizhou and XUE Yuan. Review of intelligent algorithms[J]. Engineering Geology Computer Application, 2005, (2): 9–15. [9] 胡涵, 李振宇. 多目标进化算法性能评价指标综述[J]. 软件导刊, 2019, 18(9): 1–4. doi: 10.11907/rjdk.191024HU Han and LI Zhenyu. A survey of performance indicators for multi-objective evolutionary algorithms[J]. Software Guide, 2019, 18(9): 1–4. doi: 10.11907/rjdk.191024 [10] 梅志伟. 多目标进化算法综述[J]. 软件导刊, 2017, 16(6): 204–207. doi: 10.11907/rjdk.171169MEI Zhiwei. Overview of multi objective evolutionary algorithm[J]. Software Guide, 2017, 16(6): 204–207. doi: 10.11907/rjdk.171169 [11] CAI Haoyuan, SUN Yi, WANG Xiaoping, et al. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm[J]. Optics Express, 2020, 28(10): 15347–15359. doi: 10.1364/OE.393423 [12] HUANG Yixing, FAN Qunfu, CHEN Jin, et al. Optimization of flexible multilayered metastructure fabricated by dielectric-magnetic nano lossy composites with broadband microwave absorption[J]. Composites Science and Technology, 2020, 191: 108066. doi: 10.1016/j.compscitech.2020.108066 [13] QIU Tianshuo, SHI Xin, WANG Jiafu, et al. Deep learning: A rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128. doi: 10.1002/advs.201900128 [14] TITTL A, LEITIS A, LIU Mingkai, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105–1109. doi: 10.1126/science.aas9768 [15] MA Wei, CHENG Feng, and LIU Yongmin. Deep-learning enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326–6334. doi: 10.1021/acsnano.8b03569 [16] LIU Che, YU Wenming, MA Qian, et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network[J]. Photonics Research, 2021, 9(4): B159–B167. doi: 10.1364/PRJ.416287 [17] PEURIFOY J, SHEN Yichen, YANG Yi, et al. Nanophotonic inverse design using artificial neural network[C]. Frontiers in Optics 2017, Washington, USA, 2017: FTh4A.4. doi: 10.1364/FIO.2017.FTh4A.4. [18] VAI M M, WU Shuichi, LI Bin, et al. Reverse modeling of microwave circuits with bidirectional neural network models[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(10): 1492–1494. doi: 10.1109/22.721152 [19] KABIR H, WANG Ying, YU Ming, et al. Neural network inverse modeling and applications to microwave filter design[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(4): 867–879. doi: 10.1109/TMTT.2008.919078 [20] SELLERI S, MANETTI S, and PELOSI G. Neural network applications in microwave device design[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2002, 12(1): 90–97. doi: 10.1002/mmce.7001 [21] LIU Dianjing, TAN Yixuan, KHORAM E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5(4): 1365–1369. doi: 10.1021/acsphotonics.7b01377 [22] PEURIFOY J, SHEN Yichen, JING Li, et al. Nanophotonic particle simulation and inverse design using artificial neural networks[J]. Science Advances, 2018, 4(6): eaar4206. doi: 10.1126/sciadv.aar4206 [23] 随赛. 新型人工电磁表面拓扑优化设计与应用研究[D]. [博士论文], 空军工程大学, 2019.SUI Sai. Research on topology optimization design and application of new artificial electromagnetic surface[D]. [Ph. D. dissertation], Air Force Engineering University, 2019. [24] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 [25] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展[J]. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701BAO Di, SHEN Xiaopeng, and CUI Tiejun. Progress of terahertz metamaterials[J]. Acta Physica Sinica, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701 [26] SHEN Yang, ZHANG Jieqiu, PANG Yongqiang, et al. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation[J]. Optics Express, 2018, 26(12): 15665–15674. doi: 10.1364/OE.26.015665 [27] PANG Yongqiang, SHEN Yang, LI Yongfeng, et al. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption[J]. Journal of Applied Physics, 2018, 123(15): 155106. doi: 10.1063/1.5023778 [28] PANG Yongqiang, LI Yongfeng, WANG Jiafu, et al. Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms[J]. Carbon, 2019, 147: 112–119. doi: 10.1016/j.carbon.2019.03.004 [29] SUI Sai, MA Hua, WANG Jiafu, et al. Absorptive coding metasurface for further radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(6): 065603. doi: 10.1088/1361-6463/aaa3be [30] SUI Sai, MA Hua, WANG Jiafu, et al. Synthetic design for a microwave absorber and antireflection to achieve wideband scattering reduction[J]. Journal of Physics D: Applied Physics, 2019, 52(3): 035103. doi: 10.1088/1361-6463/aaeb12 [31] CUI Yanxia, FUNG K H, XU Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443–1447. doi: 10.1021/nl204118h [32] FU Jiahui, WU Qun, ZHANG Shaoqing, et al. Design of multi-layers absorbers for low frequency applications[C]. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, 2010. doi: 10.1109/APEMC.2010.5475478. [33] SHEN Yang, ZHANG Jieqiu, WANG Jiafu, et al. Multistage dispersion engineering in a three-dimensional plasmonic structure for outstanding broadband absorption[J]. Optical Materials Express, 2019, 9(3): 1539–1550. doi: 10.1364/OME.9.001539 [34] WU C, NEUNER III B, SHVETS G, et al. Large-area wide-angle spectrally selective plasmonic absorber[J]. Physical Review B, 2011, 84(7): 075102. doi: 10.1103/PhysRevB.84.075102 [35] CHENG Yongzhi, GONG Rongzhou, NIE Yan, et al. A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors[J]. Chinese Physics B, 2012, 21(12): 127801. doi: 10.1088/1674-1056/21/12/127801 [36] SHEN Yang, ZHANG Jieqiu, WANG Wenjie, et al. Overcoming the pixel-density limit in plasmonic absorbing structure for broadband absorption enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 674–678. doi: 10.1109/LAWP.2019.2900846 [37] ZHU Ruichao, WANG Jiafu, SUI Sai, et al. Wideband absorbing plasmonic structures via profile optimization based on genetic algorithm[J]. Frontiers in Physics, 2020, 8: 231. doi: 10.3389/fphy.2020.00231 [38] NONG Jifu. Global exponential stability of delayed Hopfield neural networks[C]. 2012 International Conference on Computer Science and Information Processing, Xi’an, China, 2012. doi: 10.1109/CSIP.2012.6308827. [39] AN Jinliang, GAO Jia, LEI Jinhui, et al. An improved algorithm for TSP problem solving with Hopfield neural networks[J]. Advanced Materials Research, 2010, 143/144: 538–542. doi: 10.4028/www.scientific.net/AMR.143-144.538 [40] AIYER S V B, NIRANJAN M, and FALLSIDE F. A theoretical investigation into the performance of the Hopfield model[J]. IEEE Transactions on Neural Networks, 1990, 1(2): 204–215. doi: 10.1109/72.80232 [41] ZHU Ruichao, QIU Tianshuo, WANG Jiafu, et al. Metasurface design by a hopfield network: Finding a customized phase response in a broadband[J]. Journal of Physics D: Applied Physics, 2020, 53(41): 415001. doi: 10.1088/1361-6463/ab9785 [42] VAN DEN DRIESSCHE P and ZOU Xingfu. Global attractivity in delayed hopfield neural network models[J]. SIAM Journal on Applied Mathematics, 1998, 58(6): 1878–1890. doi: 10.1137/S0036139997321219 [43] RECH P C. Chaos and hyperchaos in a Hopfield neural network[J]. Neurocomputing, 2011, 74(17): 3361–3364. doi: 10.1016/j.neucom.2011.05.016 [44] SELL D, YANG Jianji, DOSHAY S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752–3757. doi: 10.1021/acs.nanolett.7b01082 [45] FOROUZMAND A and MOSALLAEI H. Composite multilayer shared-aperture nanostructures: A functional multispectral control[J]. ACS Photonics, 2018, 5(4): 1427–1439. doi: 10.1021/acsphotonics.7b01441 [46] TIPRAQSA P, CRASWELL E T, NOBLE A D, et al. Resource integration for multiple benefits: Multifunctionality of integrated farming systems in Northeast Thailand[J]. Agricultural Systems, 2007, 94(3): 694–703. doi: 10.1016/j.agsy.2007.02.009 [47] LING Yonghong, HUANG Lirong, HONG Wei, et al. Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation[J]. Optics Express, 2017, 25(24): 29812–29821. doi: 10.1364/OE.25.029812 [48] MAGUID E, YULEVICH I, YANNAI M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light: Science & Applications, 2017, 6(8): e17027. [49] HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485 [50] ZHU Ruichao, QIU Tianshuo, WANG Jiafu, et al. Multiplexing the aperture of a metasurface: Inverse design via deep-learning-forward genetic algorithm[J]. Journal of Physics D: Applied Physics, 2020, 53(45): 455002. doi: 10.1088/1361-6463/aba64f 期刊类型引用(9)
1. 岳朋,张建刚,邱克鹏,骆越. 基于深度学习弹性超材料带隙逆向设计研究. 力学学报. 2025(01): 103-115 . 百度学术
2. 代铁琳,金刘超,尚宸,翟晓雅,傅孝明,刘利刚. 超材料的智能设计研究进展. 计算机辅助设计与图形学学报. 2025(01): 1-27 . 百度学术
3. 周攀,巩蕾,阳志强,王利国,杨利红,李瑶,王海斌,于洁. 基于深度学习的太赫兹编码频率选择表面优化设计. 激光与光电子学进展. 2024(04): 351-358 . 百度学术
4. 栾迦淇,张亚杰,陈羽,郜定山,李培丽,李嘉琦,李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报. 2024(14): 98-111 . 百度学术
5. 肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计. 浙江大学学报(工学版). 2024(09): 1892-1901 . 百度学术
6. 姚谦,杨钊,王昕,翟智,李振,耿新宇,李秉洋,王鹏飞. 力学超结构设计方法研究进展. 应用数学和力学. 2024(08): 974-1000 . 百度学术
7. 井越洋,李培丽,张亚杰,曹阳,陈羽. 基于液晶的广角太赫兹可调谐超表面吸波器. 光子学报. 2023(10): 235-245 . 百度学术
8. 周瑶,孙俊,彭艺,孙磊,戴书浩. 基于改进粒子群优化算法的宽角度高吸收率超材料吸波体设计. 激光与光电子学进展. 2022(11): 428-436 . 百度学术
9. 韩丁,马子寅,王俊林,王鑫,刘苏雅拉图. 基于粒子群算法的超材料吸波体传感器逆设计. 中国激光. 2022(17): 168-175 . 百度学术
其他类型引用(16)
-