对海探测雷达多目标跟踪技术综述

柳超 王月基

柳超, 王月基. 对海探测雷达多目标跟踪技术综述[J]. 雷达学报, 2021, 10(1): 100–115. doi: 10.12000/JR20081
引用本文: 柳超, 王月基. 对海探测雷达多目标跟踪技术综述[J]. 雷达学报, 2021, 10(1): 100–115. doi: 10.12000/JR20081
LIU Chao and WANG Yueji. Review of multi-target tracking technology for marine radar[J]. Journal of Radars, 2021, 10(1): 100–115. doi: 10.12000/JR20081
Citation: LIU Chao and WANG Yueji. Review of multi-target tracking technology for marine radar[J]. Journal of Radars, 2021, 10(1): 100–115. doi: 10.12000/JR20081

对海探测雷达多目标跟踪技术综述

DOI: 10.12000/JR20081
基金项目: 国家部委基金
详细信息
    作者简介:

    柳 超(1984–),男,山东泰安人,博士,讲师,主要研究方向为雷达多目标跟踪、微弱目标检测等。E-mail: LC2016@buaa.edu.cn

    王月基(1974–),男,吉林通化人,副教授,主要研究方向为航空数据处理。E-mail: 314553534@qq.com

    通讯作者:

    王月基 314553534@qq.com

  • 责任主编:罗丰 Corresponding Editor: LUO Feng
  • 中图分类号: TP391.41

Review of Multi-Target Tracking Technology for Marine Radar

Funds: The National Ministries Foundation
More Information
  • 摘要: 多目标跟踪(MTT)是雷达数据处理领域的难点。相较于一般场景,海上多目标跟踪(MMTT)面临的挑战更大。一方面,复杂的海洋环境和较低的信杂比使得海面小型目标的检测性能受限,检测得到的点迹存在漏检并包含大量虚警,导致多目标跟踪处理的难度大大增加;另一方面,当海面目标以多群形式编队运动,或采用高分辨率雷达对海探测时,目标量测容易呈现跨单元分布的特征,这种情况下,采用常规的多目标跟踪方法效果不理想。目前,国内外关于海上多目标跟踪方面的研究文献还不多,且大都侧重于单一情形。该文从常规多目标跟踪方法、幅度信息辅助的多目标跟踪方法、多目标检测前跟踪方法以及多扩展目标跟踪方法等4个方面对海上多目标跟踪技术进行了梳理,并对海上多目标跟踪的未来发展方向进行了展望。

     

  • 图  1  典型雷达测量场景

    Figure  1.  Typical radar measurement scenario

    图  2  雷达跟踪结果

    Figure  2.  Radar tracking results

    图  3  多目标系统模型

    Figure  3.  Multi-target system model

  • [1] VO B N, MALLICK M, BAR-SHALOM Y, et al. Multitarget Tracking[M]. WEBSTER J G. Wiley Encyclopedia of Electrical and Electronics Engineering. New York: John Wiley & Sons, 2015.
    [2] REID D. An algorithm for tracking multiple targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843–854. doi: 10.1109/TAC.1979.1102177
    [3] FORTMANN T E, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173–184. doi: 10.1109/JOE.1983.1145560
    [4] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2007.
    [5] DAUM F and HUANG J. Nonlinear filters with log-homotopy[C]. SPIE, Signal and Data Processing of Small Targets USA, 2007, San Diego, 2007: 5920–5923.
    [6] CHANG K C and BAR-SHALOM Y. Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers[J]. IEEE Transactions on Automatic Control, 1984, 29(7): 585–594. doi: 10.1109/TAC.1984.1103597
    [7] BEARD M, VO B T, and VO B N. Bayesian multi-target tracking with merged measurements using labelled random finite sets[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1433–1447. doi: 10.1109/TSP.2015.2393843
    [8] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362
    [9] MAHLER R. PHD filters for nonstandard targets, I: Extended targets[C]. 2019 12th International Conference on Information Fusion, Seattle, USA, 2009: 915–921.
    [10] VO B N, VO B T, PHAM N T, et al. Joint detection and estimation of multiple objects from image observations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5129–5141. doi: 10.1109/TSP.2010.2050482
    [11] HOSEINNEZHAD R, VO B N, VO B T, et al. Visual tracking of numerous targets via multi-Bernoulli filtering of image data[J]. Pattern Recognition, 2012, 45(10): 3625–3635. doi: 10.1016/j.patcog.2012.04.004
    [12] MAHLER R. CPHD filters for superpositional sensors[C]. SPIE, Signal and Data Processing of Small Targets 2009, San Diego, USA, 2009: 74450E1–74450E12.
    [13] NANNURU S, COATES M, and MAHLER R. Computationally-tractable approximate PHD and CPHD filters for superpositional sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 410–420. doi: 10.1109/JSTSP.2013.2251605
    [14] BAR-SHALOM Y and TSE E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975, 11(5): 451–460. doi: 10.1016/0005-1098(75)90021-7
    [15] MUSICKI D and EVANS R. Joint integrated probabilistic data association: JIPDA[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 1093–1099. doi: 10.1109/TAES.2004.1337482
    [16] BLACKMAN S S and POPOLI R. Design and Analysis of Modern Tracking Systems[M]. Boston: Artech House, 1999: 1–24.
    [17] KURIEN T. Issues in the Design of Practical Multitarget Tracking Algorithms[M]. Bar-Shalom Y. Multitarget-Multisensor Tracking: Advanced Applications. Norwood: Artech House, 1990: 43–83.
    [18] SVENSSON D. Target tracking in complex scenarios[D]. Chalmers University of Technology, 2010.
    [19] SATHYAN T, SINHA A, KIRUBARAJAN T, et al. MDA-based data association with prior track information for passive multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 539–556. doi: 10.1109/TAES.2011.5705690
    [20] THARMARASA R, SUTHARSAN S, KIRUBARAJAN T, et al. Multiframe assignment tracker for MSTWG data[C]. 2009 12th International Conference on Information Fusion, Seattle, USA, 2009: 1837–1844.
    [21] MAHLER R P S, VO B T, and VO B N. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497–3513. doi: 10.1109/TSP.2011.2128316
    [22] LIAN Feng, HAN Chongzhao, and LIU Weifeng. Estimating unknown clutter intensity for PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066–2078. doi: 10.1109/TAES.2010.5595616
    [23] CHEN Xin, THARMARASA R, PELLETIER M, et al. Integrated clutter estimation and target tracking using Poisson point processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1210–1235. doi: 10.1109/TAES.2012.6178058
    [24] VO B T, VO B N, HOSEINNEZHAD R, et al. Robust multi-Bernoulli filtering[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 399–409. doi: 10.1109/JSTSP.2013.2252325
    [25] BATTISTELLI G, CHISCI L, FANTACCI C, et al. Consensus CPHD filter for distributed multitarget tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508–520. doi: 10.1109/JSTSP.2013.2250911
    [26] YI Wei, LI Suqi, WANG Bailu, et al. Computationally efficient distributed multi-sensor fusion with multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2019, 68: 241–256.
    [27] LI Siqi, YI Wei, HOSEINNEZHAD R, et al. Robust distributed fusion with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 278–293. doi: 10.1109/TSP.2017.2760286
    [28] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [29] SINGH S S, VO B N, BADDELEY A, et al. Filters for spatial point processes[J]. SIAM Journal on Control and Optimization, 2009, 48(4): 2275–2295. doi: 10.1137/070710457
    [30] ERDINC O, WILLETT P, and BAR-SHALOM Y. The Bin-occupancy filter and its connection to the PHD filters[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4232–4246. doi: 10.1109/TSP.2009.2025816
    [31] VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [32] VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884
    [33] CLARK D and BELL J. Convergence results for the particle PHD filter[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2652–2661. doi: 10.1109/TSP.2006.874845
    [34] JOHANSEN A M, SINGH S S, DOUCET A, et al. Convergence of the SMC implementation of the PHD filte[J]. Methodology and Computing in Applied Probability, 2006, 8(2): 265–291. doi: 10.1007/s11009-006-8552-y
    [35] WHITELEY N, SINGH S, and GODSILL S. Auxiliary particle implementation of probability hypothesis density filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1437–1454. doi: 10.1109/TAES.2010.5545199
    [36] RISTIC B, CLARK D, VO B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656–1668. doi: 10.1109/TAES.2012.6178085
    [37] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543. doi: 10.1109/TAES.2007.4441756
    [38] VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241
    [39] PASHA S A, VO B N, TUAN H D, et al. A Gaussian mixture PHD filter for jump Markov system models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919–936. doi: 10.1109/TAES.2009.5259174
    [40] MAHLER R. The Multisensor PHD filter: II. Erroneous solution via “Poisson magic”[C]. SPIE, Signal Processing, Sensor Fusion, and Target Recognition XVIII, Orlando, USA, 2009: 73360D-12.
    [41] MAHLER R. Approximate multisensor CPHD and PHD filters[C]. 2010 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [42] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [43] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [44] VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [45] REUTER S, VO B T, VO B N, et al. The labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064
    [46] VO B N, VO B T, REUTER S, et al. Towards large scale multi-target tracking[C]. SPIE, Sensors and Systems for Space Applications VII, Baltimore, USA, 2014: 90850W.
    [47] 林两魁, 许丹, 盛卫东, 等. 基于随机有限集的中段弹道目标群星载红外像平面跟踪方法[J]. 红外与毫米波学报, 2010, 29(6): 465–470.

    LIN Liangkui, XU Dan, SHENG Weidong, et al. Tracking of midcourse ballistic target group with space-based infrared FPA based on random finite set[J]. Journal of Infrared and Millimeter Waves, 2010, 29(6): 465–470.
    [48] 王晓, 韩崇昭, 连峰. 基于随机有限集的目标跟踪方法研究及最新进展[J]. 工程数学学报, 2012, 29(4): 567–578.

    WANG Xiao, HAN Chongzhao, and LIAN Feng. Survey of target tracking based on random finite set[J]. Chinese Journal of Engineering Mathematics, 2012, 29(4): 567–578.
    [49] 杜航原, 赵玉新, 杨永鹏, 等. 基于随机有限集的SLAM算法[J]. 系统工程与电子技术, 2012, 34(7): 1452–1457.

    DU Hangyuan, ZHAO Yuxin, YANG Yongpeng, et al. Slam algorithm based on random finite set[J]. Systems Engineering and Electronics, 2012, 34(7): 1452–1457.
    [50] 徐洋, 徐晖, 罗少华, 等. 基于随机有限集理论的多传感器目标联合检测跟踪算法[J]. 国防科技大学学报, 2013, 35(1): 89–96.

    XU Yang, XU Hui, LUO Shaohua, et al. Multisensor joint target detection and tracking algorithm based on random finite sets[J]. Journal of National University of Defense Technology, 2013, 35(1): 89–96.
    [51] 吴静静. 基于随机有限集的视频目标跟踪算法研究[D]. [博士论文], 上海交通大学, 2012.

    WU Jingjing. Research on tracking algorithm for visual targets based on random finite set[D]. [Ph. D. dissertation], Shanghai Jiao Tong University, 2012.
    [52] XU Jing, WANG Xiukun, HU Jiasheng, et al. Multi-platform bearings-only tracking fusion of maritime targets[C]. CIE International Conference on Radar Proceedings, Beijing, China, 2001: 1112–1114.
    [53] STATECZNY A and KAZIMIERSKI W. A concept of decentralized fusion of maritime radar targets with multisensor Kalman filter[C]. International Radar Symposium, Vilnius, Lithuania, 2010: 1–4.
    [54] GADE B, KLOSTER M, and ARONSEN M. Non-elliptical validation gate for maritime target tracking[C]. 2018 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1301–1308.
    [55] WEI Yali, ZHU Daqi, and CHU Zhenzhong. Underwater dynamic target tracking of autonomous underwater vehicle based on MPC algorithm[C]. 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Application, Wuhan, China, 2018: 1–5.
    [56] LERRO D and BAR-SHALOM Y. Automated tracking with target amplitude information[C]. 1990 American Control Conference, San Diego, USA, 1990: 2875–2880.
    [57] EHRMAN L M, BURTON C, and BLAIR W D. Using target RCS to aid measurement-to-track association in multi-target tracking[C]. 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory, Cookeville, USA, 2006: 89–93.
    [58] CLARK D, RISTIC B, VO B N, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 26–37. doi: 10.1109/TSP.2009.2030640
    [59] BREKKE E F, HALLINGSTAD O, and GLATTETRE J H. Performance of PDAF-based tracking methods in heavy-tailed clutter[C]. 2009 12th International Conference on Information Fusion, Seattle, USA, 2009: 6–9.
    [60] BREKKE E F, HALLINGSTAD O, and GLATTETRE J H. The modified Riccati equation for amplitude-aided target tracking in heavy-tailed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2874–2886. doi: 10.1109/TAES.2011.6034670
    [61] LI Suqi, KONG Lingjiang, YI Wei, et al. PHD filter with amplitude information in Weibull clutter[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–6.
    [62] BUZZI S, LOPS M, VENTURINO L, et al. Track-before-detect procedures in a multi-target environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1135–1150. doi: 10.1109/TAES.2008.4655369
    [63] GROSSI E, LOPS M, VENTURINO L, et al. A novel dynamic programming algorithm for track-before-detect in radar systems[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619. doi: 10.1109/TSP.2013.2251338
    [64] YI Wei, MORELANDE M R, KONG Lingjiang, et al. An efficient multi-frame track-before-detect algorithm for multi-target tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 421–434. doi: 10.1109/JSTSP.2013.2256415
    [65] GROSSI E, LOPS M, and VENTURINO L. A track-before-detect algorithm with thresholded observations and closely-spaced targets[J]. IEEE Signal Processing Letters, 2013, 20(12): 1171–1174. doi: 10.1109/LSP.2013.2283586
    [66] WANG Jinghe, YI Wei, KIRUBARAJAN T, et al. An efficient recursive multiframe track-before-detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 190–204. doi: 10.1109/TAES.2017.2741898
    [67] YI Wei, FANG Zicheng, LI Wujun, et al. Multi-frame track-before-detect algorithm for maneuvering target tracking[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4104–4118. doi: 10.1109/TVT.2020.2976095
    [68] BOERS Y and DRIESSEN J N. Multitarget particle filter track before detect application[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(6): 351–357. doi: 10.1049/ip-rsn:20040841
    [69] ORTON M and FITZGERALD W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 216–223. doi: 10.1109/78.978377
    [70] KREUCHER C, KASTELLA K, and HERO A O. Multitarget tracking using the joint multitarget probability density[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1396–1414. doi: 10.1109/TAES.2005.1561892
    [71] Garcia-Fernandez A F, Grajal J, and Morelande M R. Two-layer particle filter for multiple target detection and tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1569–1588. doi: 10.1109/TAES.2013.6558005
    [72] YI Wei, MORELANDE M R, KONG Lingjiang, et al. A computationally efficient particle filter for multitarget tracking using an independence approximation[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 843–856. doi: 10.1109/TSP.2012.2229999
    [73] ÚBEDA-MEDINA L, GARCÍA-FERNANDEZ Á F, and GRAJAL J. Adaptive auxiliary particle filter for track-before-detect with multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2317–2330. doi: 10.1109/TAES.2017.2691958
    [74] STREIT R L, GRAHAM M L, and WALSH M J. Multitarget tracking of distributed targets using histogram-PMHT[J]. Digital Signal Processing, 2002, 12(2/3): 394–404.
    [75] DAVEY S J. Histogram PMHT with particles[C]. 14th International Conference on Information Fusion, Chicago, USA, 2011: 779–786.
    [76] PUNITHAKUMAR K and KIRUBARAJAN T. A sequential Monte Carlo probability hypothesis density algorithm for multitarget track-before-detect[C]. The SPIE, Signal and Data Processing of Small Targets, San Diego, USA, 2005: 59131S.
    [77] LIN L, BAR-SHALOM Y, and KIRUBARAJAN T. Track labeling and PHD filter for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 778–795. doi: 10.1109/TAES.2006.248213
    [78] PAPI F, VO B T, BOCQUEL M, et al. Multi-target track-before-detect using labeled random finite set[C]. International Conference on Control, Automation and Information Science (ICCAIS), Nha Trang, Vietnam, 2013: 116–121.
    [79] GARCIA-FERNANDEZ A F. Track-before-detect labeled multi-Bernoulli particle filter with label switching[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2123–2138. doi: 10.1109/TAES.2016.150343
    [80] PAPI F, VO B N, VO B T, et al. Generalized labeled multi-Bernoulli approximation of multi-object densities[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5487–5497. doi: 10.1109/TSP.2015.2454478
    [81] MAHLER R and EL-FALLAH A. An approximate CPHD filter for superpositional sensors[C]. SPIE, Sensor Fusion, and Target Recognition XXI, Baltimore, USA, 2012: 83920K.
    [82] LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Multiobject tracking for generic observation model using labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 368–383. doi: 10.1109/TSP.2017.2764864
    [83] 童慧思, 张颢, 孟华东, 等. PHD滤波器在多目标检测前跟踪中的应用[J]. 电子学报, 2011, 39(9): 2046–2051.

    TONG Huisi, ZHANG Hao, MENG Huadong, et al. Probability hypothesis density filter multitarget track-before-detect application[J]. Acta Electronica Sinica, 2011, 39(9): 2046–2051.
    [84] 林再平, 周一宇, 安玮, 等. 基于概率假设密度滤波平滑器的检测前跟踪算法[J]. 光学学报, 2012, 32(10): 1012003. doi: 10.3788/AOS201232.1012003

    LIN Zaiping, ZHOU Yiyu, AN Wei, et al. Track-before-detect algorithm based on probability hypothesis density smoother[J]. Acta Optica Sinica, 2012, 32(10): 1012003. doi: 10.3788/AOS201232.1012003
    [85] LI Suqi, WANG Bailu, YI Wei, et al. Multiple sensor multi-Bernoulli filter based track-before-detect for polarimetric MIMO radars[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1562–1266.
    [86] 李翠芸, 李宁, 姬红兵. 多伯努利滤波的快速红外弱小目标检测与跟踪[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(4): 69–74, 109. doi: 10.3969/j.issn.1001-2400.2016.04.013

    LI Cuiyun, LI Ning, and JI Hongbing. Fast IR dim small targets detection and tracking based on the multi-Bernoulli filter[J]. Journal of Xidian University, 2016, 43(4): 69–74, 109. doi: 10.3969/j.issn.1001-2400.2016.04.013
    [87] 李发宗, 毛兴鹏, 常维国. 利用极化信息的高频地波雷达TBD检测算法[J]. 哈尔滨工业大学学报, 2016, 48(5): 36–42. doi: 10.11918/j.issn.0367-6234.2016.05.005

    LI Fazong, MAO Xingpeng, and CHANG Weiguo. TBD algorithm based on polarization information of high frequency surface wave radar[J]. Journal of Harbin Institute of Technology, 2016, 48(5): 36–42. doi: 10.11918/j.issn.0367-6234.2016.05.005
    [88] 裴家正, 黄勇, 董云龙, 等. 杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法[J]. 雷达学报, 2019, 8(3): 355–365. doi: 10.12000/JR18060

    PEI Jiazheng, HUANG Yong, DONG Yunlong, et al. Track-before-detect algorithm based on improved auxiliary particle PHD filter under clutter background[J]. Journal of Radars, 2019, 8(3): 355–365. doi: 10.12000/JR18060
    [89] FARSHCHIAN M and RAJ R G. A multi-scale and adaptive track-before-detect technique for maritime environments[C]. 2011 IEEE RadarCon, Kansas City, USA, 2011: 818–823.
    [90] MCDONALD M and BALAJI B. Impact of measurement model mismatch on nonlinear track-before-detect performance for maritime RADAR surveillance[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 602–614. doi: 10.1109/JOE.2011.2165369
    [91] EBENEZER S P and PAPANDREOU-SUPPAPPOLA A. Multiple target track-before-detect in compound Gaussian clutter[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2539–2543.
    [92] ERRASTI-ALCALA B, FUSCALDO W, BRACA P, et al. Realistic extended target model for track before detect in maritime surveillance[C]. OCEANS 2015, Genoa, Italy, 2015: 1–9.
    [93] JIANG Haichao, YI Wei, CUI Guolong, et al. Knowledge-based track-before-detect strategies for fluctuating targets in K-distributed clutter[J]. IEEE Sensors Journal, 2016, 16(19): 7124–7132. doi: 10.1109/JSEN.2016.2597320
    [94] BERRY P, VENKATARAMAN K, and ROSENBERG L. Adaptive detection of low-observable targets in correlated sea clutter using Bayesian track-before-detect[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 398–403.
    [95] GILHOLM K, GODSILL S, MASKELL S, et al. Poisson models for extended target and group tracking[C]. SPIE, Signal and Data Processing of Small Targets, San Diego, USA, 2005: 230–241.
    [96] GRANSTRÖM K, LUNDQUIST C, and ORGUNER O. Extended target tracking using a Gaussian-mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268–3286. doi: 10.1109/TAES.2012.6324703
    [97] CLARK D and GODSILL S. Group target tracking with the Gaussian mixture probability hypothesis density filter[C]. 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, Australia, 2007: 149–154.
    [98] KOCH W and SAUL R. A Bayesian approach to extended object tracking and tracking of loosely structured target groups[C]. 2005 7th International Conference on Information Fusion, Philadelphia, PA, USA,2005: 827–834. doi: 10.1109/ICIF.2005.1591939.
    [99] BAUM M and HANEBECK U D. Random hypersurface models for extended object tracking[C]. 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 2009: 178–183.
    [100] BAUM M and HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149–159. doi: 10.1109/TAES.2013.120107
    [101] GRANSTRÖM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657–5671. doi: 10.1109/TSP.2012.2212888
    [102] GRANSTRÖM K and ORGUNER U. Implementation of the GIW-PHD filter[R]. LiTH-ISY-R-3046, 2012.
    [103] ZHANG Hui, XU Hui, WANG Xueying, et al. A PHD filter for tracking closely spaced objects with elliptic random hypersurface models[C]. The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1558–1565.
    [104] GRANSTRÖM K and LUNDQUIST C. On the use of multiple measurement models for extended target tracking[C]. The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1534–1541.
    [105] GRANSTRÖM K, REUTER S, MEISSNER D, et al. A multiple model PHD approach to tracking of cars under an assumed rectangular shape[C]. 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–8.
    [106] GRANSTRÖM K and ORGUNER U. Estimation and maintenance of measurement rates for multiple extended target tracking[C]. 2012 15th International Conference on Information Fusion, Singapore, 2012: 2170–2176.
    [107] SWAIN A and CLARK D. Extended object filtering using spatial independent cluster processes[C]. 2010 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [108] SWAIN A and CLARK D. The PHD filter for extended target tracking with estimable extent shape parameters of varying size[C]. 2012 15th International Conference on Information Fusion, Singapore, 2012: 1111–1118.
    [109] LIAN Feng, HAN Chongzhao, LIU Weifeng, et al. Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets[J]. Signal Processing, 2012, 92(7): 1729–1744. doi: 10.1016/j.sigpro.2012.01.009
    [110] LUNDQUIST C, GRANSTRÖM K, and ORGUNER U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472–483. doi: 10.1109/JSTSP.2013.2245632
    [111] BEARD M, REUTER S, GRANSTRÖM K, et al. Multiple extended target tracking with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2016, 64(7): 1638–1653. doi: 10.1109/TSP.2015.2505683
    [112] WILLIAMS J. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1664–1687. doi: 10.1109/TAES.2015.130550
    [113] GARCÍA-FERNÁNDEZ Á F, WILLIAMS J L, GRANSTRÖM K, et al. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1883–1901. doi: 10.1109/TAES.2018.2805153
    [114] GRANSTRÖM K, FATEMI M, and SVENSSON L. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 208–225. doi: 10.1109/TAES.2019.2920220
    [115] CARMI A, SEPTIER F, and GODSILL S J. The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking[J]. Automatica, 2012, 48(10): 2454–2467. doi: 10.1016/j.automatica.2012.06.086
    [116] WIENEKE M and KOCH W. A PMHT approach for extended objects and object groups[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2349–2370. doi: 10.1109/TAES.2012.6237596
    [117] 杜浩翠, 谢维信, 范建德. 基于PPP模型的多扩展目标跟踪的JPDA算法研究[J]. 信号处理, 2019, 35(6): 1079–1087. doi: 10.16798/j.issn.1003-0530.2019.06.020

    DU Haocui, XIE Weixin, and FAN Jiande. JPDA algorithm for multi-extended target tracking based on PPP model[J]. Journal of Signal Processing, 2019, 35(6): 1079–1087. doi: 10.16798/j.issn.1003-0530.2019.06.020
    [118] 陈一梅, 刘伟峰, 孔明鑫, 等. 基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法[J]. 自动化学报, 2020, 46(7): 1445–1456. doi: 10.16383/j.aas.c180077

    CHEN Yimei, LIU Weifeng, KONG Mingxin, et al. A modeling and tracking algorithm of finite mixture models for multiple extended target based on the GLMB filter and Gibbs sampler[J]. Acta Automatica Sinica, 2020, 46(7): 1445–1456. doi: 10.16383/j.aas.c180077
    [119] 胡琪. 基于随机矩阵的扩展目标跟踪算法研究[D]. [博士论文], 西安电子科技大学, 2018.

    HU Qi. Extended target tracking algorithms based on random matrix[D]. [Ph. D. dissertation], Xidian University, 2018.
    [120] 樊鹏飞, 李鸿艳. 基于GIW-PHD的扩展目标联合跟踪与分类算法[J]. 电子学报, 2018, 46(7): 1562–1570. doi: 10.3969/j.issn.0372-2112.2018.07.004

    FAN Pengfei and LI Hongyan. Joint tracking and classification of extended object based on the GIW-PHD filter[J]. Acta Electronica Sinica, 2018, 46(7): 1562–1570. doi: 10.3969/j.issn.0372-2112.2018.07.004
    [121] 杜金瑞. 基于多伯努利滤波器的多扩展目标跟踪方法研究[D]. [硕士论文], 兰州理工大学, 2018.

    DU Jinrui. The research on multi-extended target tracking algorithm based on multi-Bernoulli filter[D]. [Master dissertation], Lanzhou University of Technology, 2018.
    [122] 李鹏. 基于随机有限集的多扩展目标跟踪和航迹维持算法研究[D]. [博士论文], 江南大学, 2018.

    LI Peng. Research on multiple extended target tracking and trajectory maintenance algorithms based on random finite set[D]. [Ph. D. dissertation], Jiangnan University, 2018.
    [123] 孙力帆, 何子述, 冀保峰, 等. 基于高精度传感器量测的机动扩展目标建模与跟踪[J]. 光学学报, 2018, 38(2): 0228001. doi: 10.3788/AOS201838.0228001

    SUN Lifan, HE Zishu, JI Baofeng, et al. Modeling and tracking of maneuvering extended objects using high resolution sensors[J]. Acta Optica Sinica, 2018, 38(2): 0228001. doi: 10.3788/AOS201838.0228001
    [124] 柳超, 孙进平, 陈小龙, 等. 结合幅度信息的扩展目标随机有限集跟踪方法[J]. 雷达学报, 2020, 9(4): 730–738. doi: 10.12000/JR19071

    LIU Chao, SUN Jinping, CHEN Xiaolong, et al. Random finite set-based extended target tracking method with amplitude information[J]. Journal of Radars, 2020, 9(4): 730–738. doi: 10.12000/JR19071
    [125] VIVONE G, BRACA P, and ERRASTI-ALCALA B. Extended target tracking applied to X-band marine radar data[C]. OCEANS 2015, Genoa, Italy, 2015: 1–6.
    [126] VIVONE G, BRACA P, NATALE A, et al. Converted measurements Bayesian extended target tracking applied to X-band marine radar data[J]. Journal of Advances in Information Fusion, 2017, 12(2): 189–210.
    [127] VIVONE G and BRACA P. Joint probabilistic data association tracker for extended target tracking applied to X-band marine radar data[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 1007–1019. doi: 10.1109/JOE.2015.2503499
    [128] MAGNANT C, KEMKEMIAN S, and ZIMMER L. Joint tracking and classification for extended targets in maritime surveillance[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1117–1122.
    [129] ZHOU Yi, WANG T, HU Ronghua, et al. Multiple kernelized correlation filters (MKCF) for extended object tracking using X-band marine radar data[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3676–3688. doi: 10.1109/TSP.2019.2917812
    [130] LIU Chao, SUN Jinping, and WANG Ziwei. Double-directional Bernoulli track-before-detect filter with particle flow[C]. 2019 International Conference on Control, Automation and Information Sciences, Chengdu, China, 2019: 1–6.
    [131] 柳超, 孙进平, 袁常顺, 等. Geodesic流多伯努利检测前跟踪方法[J]. 电子学报, 2020, 48(7): 1375–1379. doi: 10.3969/j.issn.0372-2112.2020.07.17

    LIU Chao, SUN Jinping, YUAN Changshun, et al. Multi-Bernoulli track-before-detect method with Geodesic flow[J]. Acta Electronica Sinica, 2020, 48(7): 1375–1379. doi: 10.3969/j.issn.0372-2112.2020.07.17
  • 加载中
图(3)
计量
  • 文章访问数:  6038
  • HTML全文浏览量:  2807
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-09-02
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回