基于“数据驱动+智能学习”的合成孔径雷达学习成像

罗迎 倪嘉成 张群

罗迎, 倪嘉成, 张群. 基于“数据驱动+智能学习”的合成孔径雷达学习成像[J]. 雷达学报, 2020, 9(1): 107–122. doi: 10.12000/JR19103
引用本文: 罗迎, 倪嘉成, 张群. 基于“数据驱动+智能学习”的合成孔径雷达学习成像[J]. 雷达学报, 2020, 9(1): 107–122. doi: 10.12000/JR19103
LUO Ying, NI Jiacheng, and ZHANG Qun. Synthetic aperture radar learning-imaging method based on data-driven technique and artificial intelligence[J]. Journal of Radars, 2020, 9(1): 107–122. doi: 10.12000/JR19103
Citation: LUO Ying, NI Jiacheng, and ZHANG Qun. Synthetic aperture radar learning-imaging method based on data-driven technique and artificial intelligence[J]. Journal of Radars, 2020, 9(1): 107–122. doi: 10.12000/JR19103

基于“数据驱动+智能学习”的合成孔径雷达学习成像

DOI: 10.12000/JR19103
基金项目: 国家自然科学基金(61631019, 61971434)
详细信息
    作者简介:

    罗 迎(1984–),男,湖南益阳人,空军工程大学信息与导航学院副教授,博士生导师,主要研究方向为雷达成像与目标识别。E-mail: luoying2002521@163.com

    倪嘉成(1990–),男,陕西西安人,空军工程大学信息与导航学院讲师,主要研究方向为SAR成像与目标识别。E-mail: littlenjc@sina.com

    张 群(1964–),男,陕西合阳人,空军工程大学信息与导航学院教授,博士生导师,主要研究方向为雷达成像与目标识别。E-mail: zhangqunnus@gmail.com

    通讯作者:

    罗迎 luoying2002521@163.com

  • 中图分类号: TN957.5

Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence

Funds: The National Natural Science Foundation of China (61631019, 61971434)
More Information
  • 摘要: 对感兴趣目标的数量、位置、型号等参数信息的精确获取一直是合成孔径雷达(SAR)技术中最为重要的研究内容之一。现阶段的SAR信息处理主要分为成像和解译两大部分,两者的研究相对独立。SAR成像和解译各自开发了大量算法,复杂度越来越高,但SAR解译并未因成像分辨率提升而变得简单,特别是对重点目标识别率低的问题并未从本质上得以解决。针对上述问题,该文从SAR成像解译一体化角度出发,尝试利用“数据驱动+智能学习”的方法提升机载SAR的信息处理能力。首先分析了基于“数据驱动+智能学习”方法的SAR成像解译一体化的可行性及现阶段存在的主要问题;在此基础上,提出一种“数据驱动+智能学习”的SAR学习成像方法,给出了学习成像框架、网络参数选取方法、网络训练方法和初步的仿真结果,并分析了需要解决的关键性技术问题。

     

  • 图  1  现阶段SAR信息处理基本流程图

    Figure  1.  Basic flow chart of SAR information processing at present

    图  2  一种SAR“回波数据域”到“目标参数域”成像解译一体化流程图

    Figure  2.  An flow chart of SAR imaging & interpretation integration from “echo data domain” to “target parameter domain”

    图  3  1维SAR观测模型示意图

    Figure  3.  One dimensional SAR observation model

    图  4  SAR学习成像网络结构图

    Figure  4.  Network structure of SAR learning-imaging

    图  5  非监督训练、γ=1, 20 dB信噪比条件下成像结果对比

    Figure  5.  Comparison of imaging results using unsupervised training, γ=1 and SNR=20 dB

    图  6  非监督训练、γ=0.1, 5 dB信噪比条件下成像结果对比

    Figure  6.  Comparison of imaging results using unsupervised training, γ=0.1 and SNR=5 dB

    图  7  低PRF条件下成像结果对比

    Figure  7.  Imaging results under low PRF condition

    图  8  不同样本数据量对应的网络训练误差

    Figure  8.  Network training error corresponding to differentnumber of training samples

    图  9  含载机轨迹误差条件下成像结果对比

    Figure  9.  Imaging results with platform trajectory error

    图  10  MSTAR目标成像结果对比

    Figure  10.  MSTAR target imaging results

    图  11  MSTAR其它两种目标成像结果对比

    Figure  11.  Imaging results of two different targets in MSTAR dataset

    表  1  雷达参数和网络参数

    Table  1.   Parameters of radar and network

    参数
    雷达参数载频fc (GHz)10
    带宽Br (MHz)150
    脉冲重复频率PRF (Hz)500
    脉冲持续时间Tr (μs)1.2
    方位向分辨率(m)2
    距离向分辨率(m)2
    平台高度H (m)10000
    平台速度v (m/s)100
    网络参数网络层数L
    训练样本数量Ntrain
    学习率η
    随机降采样率γ
    下载: 导出CSV

    表  2  成像质量与成像时间对比

    Table  2.   Comparison of imaging quality and imaging time

    算法γ=1, 20 dB信噪比γ=0.1, 5 dB信噪比
    PSNR (dB)NMSEPLSR (dB)成像时间(s) PSNR (dB)NMSEPLSR (dB)成像时间(s)
    stOMP24.610.25–15.5510.93–13.051.46e31.20
    l1/2范数ISTA24.440.26–15.6948.3421.600.50–13.874.83
    所提方法L=319.950.73–17.400.15119.720.77–13.560.012
    所提方法L=825.580.20–19.490.15422.910.37–16.010.012
    所提方法L=1125.800.19–19.520.15122.910.37–16.130.012
    下载: 导出CSV
  • [1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2006: 1–6.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technologies[M]. Beijing: Publishing House of Electronics Industry, 2006: 1–6.
    [2] HONG Wen, WANG Yanping, TAN Weixian, et al. Tomographic SAR and circular SAR experiments in anechoic chamber[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1–6.
    [3] 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    [4] YANG Wei, CHEN Jie, LIU Wei, et al. A modified three-step algorithm for TOPS and sliding spotlight SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6910–6921. doi: 10.1109/TGRS.2017.2735993
    [5] CHEN Siwei, WANG Xuesong, and XIAO Shunping. Urban damage level mapping based on co-polarization coherence pattern using multitemporal polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2657–2667. doi: 10.1109/JSTARS.2018.2818939
    [6] YANG Jungang, THOMPSON J, HUANG Xiaotao, et al. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983–994. doi: 10.1109/TGRS.2012.2204891
    [7] CHEN Yichang, LI Gang, ZHANG Qun, et al. Motion compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 551–562. doi: 10.1109/TGRS.2016.2611522
    [8] 唐禹, 王岩飞, 张冰尘. 滑动聚束SAR成像模式研究[J]. 电子与信息学报, 2007, 29(1): 26–29. doi: 10.3724/SP.J.1146.2005.00398

    TANG Yu, WANG Yanfei, and ZHANG Bingchen. A study of sliding spotlight SAR imaging mode[J]. Journal of Electronics &Information Technology, 2007, 29(1): 26–29. doi: 10.3724/SP.J.1146.2005.00398
    [9] 杨军, 李震宇, 孙光才, 等. 一种新的大斜视TOPS SAR全孔径成像方法[J]. 西安电子科技大学学报: 自然科学版, 2015, 42(1): 42–48, 55. doi: 10.3969/j.issn.1001-2400.2015.01.08

    YANG Jun, LI Zhenyu, SUN Guangcai, et al. Novel full aperture imaging algorithm for highly squinted TOPS SAR[J]. Journal of Xidian University:Natural Science, 2015, 42(1): 42–48, 55. doi: 10.3969/j.issn.1001-2400.2015.01.08
    [10] ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1-norm regularization-the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
    [11] ZHANG Fubo, LIANG Xingdong, WU Yirong, et al. 3D surface reconstruction of layover areas in continuous terrain for multi-baseline SAR interferometry using a curve model[J]. International Journal of Remote Sensing, 2015, 36(8): 2093–2112. doi: 10.1080/01431161.2015.1030042
    [12] TAN Weixian, HUANG Pingping, HAN Kuoye, et al. Array error calibration methods in downward-looking linear-array three-dimensional synthetic aperture radar[J]. Journal of Applied Remote Sensing, 2016, 10(2): 025010. doi: 10.1117/1.jrs.10.025010
    [13] 徐丰, 金亚秋. 从物理智能到微波视觉[J]. 科技导报, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004

    XU Feng and JIN Yaqiu. From the emergence of intelligent science to the research of microwave vision[J]. Science &Technology Review, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004
    [14] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [15] LI Gang, XIA Xianggen, XU Jia, et al. A velocity estimation algorithm of moving targets using single antenna SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1052–1062. doi: 10.1109/TAES.2009.5259182
    [16] YANG Jungang, HUANG Xiaotao, THOMPSON J, et al. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608–4620. doi: 10.1109/tgrs.2013.2283054
    [17] CHEN Yichang, ZHANG Qun, YIN Yufu, et al. Estimation of the velocity of a moving ground target using a SAR system, based on a modified multiple-measurement vector model[J]. Remote Sensing Letters, 2017, 8(10): 937–946. doi: 10.1080/2150704X.2017.1339919
    [18] ZHANG Bingchen, HONG Wen, and WU Yirong. Sparse microwave imaging: Principles and applications[J]. Science China Information Sciences, 2012, 55(3): 1722–1754. doi: 10.1007/s11432-012-4633-4
    [19] NI Jiacheng, ZHANG Qun, LUO Ying, et al. Compressed sensing SAR imaging based on centralized sparse representation[J]. IEEE Sensors Journal, 2018, 18(12): 4920–4932. doi: 10.1109/JSEN.2018.2831921
    [20] NI Jiacheng, ZHANG Qun, YIN Yufu, et al. A novel scan SAR imaging method for maritime surveillance via Lp regularization[J]. International Journal of Remote Sensing, 2018, 39(1): 169–190. doi: 10.1080/01431161.2017.1382744
    [21] 焦李成, 张向荣, 侯彪, 等. 智能SAR图像处理与解译[M]. 北京: 科学出版社, 2008: 1–7.

    JIAO Licheng, ZHANG Xiangrong, HOU Biao, et al. Intelligent SAR Image Processing and Interpretation[M]. Beijing: Science Press, 2008: 1–7.
    [22] 张新征, 谭志颖, 王亦坚. 基于多特征-多表示融合的SAR图像目标识别[J]. 雷达学报, 2017, 6(5): 492–502. doi: 10.12000/JR17078

    ZHANG Xinzheng, TAN Zhiying, and WANG Yijian. SAR target recognition based on multi-feature multiple representation classifier fusion[J]. Journal of Radars, 2017, 6(5): 492–502. doi: 10.12000/JR17078
    [23] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040

    WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040
    [24] CHANG J H R, LI Chunliang, PÓCZOS B, et al. One network to solve them all-solving linear inverse problems using deep projection models[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 5888–5897. doi: 10.1109/ICCV.2017.627.
    [25] SHAH V and HEGDE C. Solving linear inverse problems using GAN priors: An algorithm with provable guarantees[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 4609–4613. doi: 10.1109/ICASSP.2018.8462233.
    [26] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    [27] MASON E, YONEL B, and YAZICI Y B. Deep learning for SAR image formation[C]. SPIE 10201, Algorithms for Synthetic Aperture Radar Imagery XXIV, Anaheim, USA, 2017. doi: 10.1117/12.2267831.
    [28] BORGERDING M, SCHNITER P, and RANGAN S. AMP-inspired deep networks for sparse linear inverse problems[J]. IEEE Transactions on Signal Processing, 2017, 65(16): 4293–4308. doi: 10.1109/TSP.2017.2708040
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  6324
  • HTML全文浏览量:  1948
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-02-26
  • 网络出版日期:  2020-02-01

目录

    /

    返回文章
    返回