涡旋电磁波天线技术研究进展

郭忠义 汪彦哲 郑群 尹超逸 杨阳 宫玉彬

郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091
引用本文: 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091
GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
Citation: GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091

涡旋电磁波天线技术研究进展

DOI: 10.12000/JR19091
基金项目: 国家自然科学基金项目(61775050, 61921002),中央高校基本研究经费(PA2019GDZC0098)
详细信息
    作者简介:

    郭忠义(1981–),男,安徽阜南人,合肥工业大学教授、博士生导师。主要研究方向包括涡旋雷达系统、智能传感系统、偏振智能信息处理、先进光通信技术、复杂电磁环境等。发表SCI检索论文130余篇,被国际国内同行正面引用1400余次。E-mail: guozhongyi@hfut.edu.cn

    汪彦哲(1996–),男,安徽芜湖人,在读硕士。2019年于合肥工业大学计算机与信息学院攻读硕士学位。研究方向为涡旋电磁波天线与涡旋电磁波雷达成像。E-mail: wangyanzhehfut@163.com

    郑 群(1996–),女,安徽池州人,在读硕士。2017年于合肥工业大学计算机与信息学院攻读硕士学位。研究方向为超表面天线、涡旋电磁波天线,目前发表论文2篇。E-mail: zhengqun1996@163.com

    尹超逸(1994–),男,安徽安庆人,在读硕士。2017年于合肥工业大学计算机与信息学院攻读硕士学位。研究方向为涡旋电磁波天线、共口径天线,目前发表论文1篇。E-mail: yinchaoyi19940918@163.com

    杨 阳,男,河南南阳人,在读博士。2015年获得电子科技大学真空电子专业学士学位,目前在电子科技大学微波电真空器件国家重点实验室攻读物理电子学博士学位。研究方向包括浸水天线、OAM天线和微波成像,目前已经发表期刊论文2篇,会议论文5篇。E-mail: yangyang_19930129@163.com

    宫玉彬,男,山东蓬莱人,博士,教授。1998年在电子科技大学获得物理电子专业博士学位。现为电子科技大学特聘教授、微波真空器件国家重点实验室副主任、研究室主任。研究方向包括新的毫米波和太赫兹辐射源,以及生物电磁效应,发表300多篇学术论文,获得科学和学术奖项十多次。E-mail: ybgong@uestc.edu.cn

    通讯作者:

    郭忠义 guozhongyi@hfut.edu.cn

  • 责任主编:崔铁军 Corresponding Editor: CUI Tiejun
  • 中图分类号: TN820

Advances of Research on Antenna Technology of Vortex Electromagnetic Waves

Funds: The National Natural Science Foundation of China (61775050, 61921002), The Fundamental Research Fund for the Central Universities of China (PA2019GDZC0098)
More Information
  • 摘要: 涡旋电磁波,因携带有轨道角动量(OAM),从而体现出除了传统的强度、相位、频率、极化等自由度之外的一种新型自由度,理论上在任意频率下都具有无穷多种互不干扰的正交模态,并且近年来其在雷达成像、无线通信等研究领域展现出重要的应用潜力,所以引起国内外学者的广泛关注,具有很高的研究价值和应用前景。在这里,该文主要介绍近年来涡旋电磁波天线技术的研究进展,包括单一微带贴片天线、阵列天线、行波天线、以及超表面天线结构等。单一微带贴片天线由于其结构简单、制作成本低而被广泛运用;行波天线可以在宽带范围内产生多OAM模式的涡旋电磁波;阵列天线的设计原理简单,可以灵活地控制产生不同模态的高增益OAM电磁波;而超表面天线不需要复杂的馈电网络,从而具有天线整体剖面较低的优势。该文对这4种常见的涡旋电磁波天线进行了总结,并展望了未来的发展趋势。

     

  • 图  1  不同模式OAM波束图

    Figure  1.  Different modes OAM beam pattern

    图  2  单一微带贴片天线

    Figure  2.  Single microstrip patch antenna

    图  3  圆锥共形贴片天线[57]

    Figure  3.  Conical conformal patch antenna[57]

    图  4  谐振腔行波天线

    Figure  4.  Cavity traveling wave antenna

    图  5  螺旋行波天线

    Figure  5.  Spiral traveling wave antenna

    图  6  内外双馈双臂阿基米德螺旋天线[65]

    Figure  6.  Inner and outer dual-fed dual-arm archimedean spiral antenna[65]

    图  7  立体螺旋天线[66]

    Figure  7.  Three-dimensional helical antenna[66]

    图  8  三环嵌套平面等角螺旋线[67]

    Figure  8.  Three-ring nested plane equiangular helix[67]

    图  9  偶极子阵列天线

    Figure  9.  Dipole array antenna

    图  10  微带贴片阵列天线

    Figure  10.  Microstrip patch array antenna

    图  11  其他阵列天线

    Figure  11.  Other array antennas

    图  12  反射型超表面产生OAM波

    Figure  12.  The reflected metasurface generates OAM waves

    图  13  基于二极管可调相位网络结构实现可重构的OAM波[113]

    Figure  13.  Reconfigurable OAM wave based on diode phase adjustable network structure[113]

    图  14  透射型超表面产生OAM波

    Figure  14.  The transmitted metasurface generates OAM waves

    图  15  全息超表面产生OAM波

    Figure  15.  The holographic metasurface generates OAM waves

    图  16  数字编码型超表面产生OAM波

    Figure  16.  The digitally encoded metasurface generates OAM waves

    表  1  单一的微带贴片天线结构产生的涡旋电磁波的性能

    Table  1.   Performances of generating vortex electromagnetic waves a single microstrip patch antenna structure

    天线类型单位时间天线尺寸($ \lambda_0 $)工作频率(GHz)OAM模式增益(dB)
    不规则F形结构[51]北京邮电大学20171.02×1.25×0.0617.00+1/
    规则的椭圆形结构[52]意大利尼科洛库萨诺大学20140.80×0.80×0.012.40+1, +2/
    规则的正八边形结构[53]西安电子科技大学20191.24×1.24×0.022.47+1, –14.8
    规则的圆形结构[54]厦门大学20190.27×0.27×0.01
    0.46×0.46×0.02
    1.62
    2.73
    +1
    +2
    /
    双馈点环形嵌套结构[55]成都电子科技大学2017$ \Phi $2.26×0.035.65+1, –2/
    单馈点环形嵌套结构[56]中国人民大学20181.00×1.00×0.134.65~5.20+2, +31.5, 1.8
    单馈点圆锥共形结构[57]合肥工业大学2019$\Phi $0.53×0.022.40±1, ±26.6
    单馈点环形嵌套结构[58]意大利尼科洛库萨诺大学2017$\Phi $1.00×0.012.00+1/
    下载: 导出CSV

    表  2  报道的行波天线结构产生OAM波的性能

    Table  2.   Reported performances of generating OAM wave from traveling wave antenna structure

    天线类型单位时间天线尺寸(λ0)工作频率(GHz)OAM模式增益(dB)
    环形谐振腔天线[59-61]浙江大学2015/10.002, 3, 4/
    2017Φ4.1210.00±33.39
    2017Φ20.00×8.4310.00±218.85
    ±319.75
    单臂阿基米德平面螺旋天线[62]云南大学2017Φ0.76×0.011.30~3.251/
    Φ1.57×0.023.45~6.102
    Φ2.79×0.036.25~10.503
    嵌套三维立体螺旋线[63]空军工程大学2019>Φ0.904.80~5.2027.60
    3
    加腔内外馈电阿基米德螺旋线[65]合肥工业大学20192.60×0.803.00±16.70~10.00
    3.47×1.074.00±2
    4.16×1.284.80±3
    加腔三维立体螺旋线[66]合肥工业大学2019Φ0.51×0.130.7604.55
    Φ1.03×0.261.551
    Φ1.63×0.412.452
    四臂等角平面螺旋天线[64]电子科技大学2019Φ2.13×0.035.60~6.000/
    –1
    –2
    –3
    三环嵌套平面等角螺旋线[67]电子科技大学2019Φ3.00×0.573.0016.94
    36.76
    55.49
    下载: 导出CSV

    表  3  阵列天线结构产生的OAM波的性能

    Table  3.   Reported performances of OAM wave generated by array antenna structure

    阵元结构单位时间天线尺寸(λ0)工作频率(GHz)OAM模式增益(dB)
    微带贴片英国谢菲尔德大学[72]2014Φ2.00×0.0510.00±12.45
    法国雷恩第一大学[73]20150.91×0.69×0.012.50+1/
    意大利帕多瓦大学[74]2015Φ1.60×0.015.750, ±18.35
    上海交通大学[83]20161.67×1.67×0.104.80±19.00
    清华大学[75]20172.03×2.03×0.011.900, ±1, ±2, ±3/
    复旦大学[76]2017Φ4.84×0.035.72~5.95±1/
    中国科学院大学[86]2017Φ6.008.00~12.000, +1, +2, +3/
    西安电子科技大学[53,77,80,82,84]20172.20×2.00×0.105.40~5.60–1
    +1
    7.35
    8.05
    3.10×3.10×0.079.70~10.700
    ±1
    ±2
    ±3
    14.15
    9.55
    9.25
    8.95
    20190.61×0.61×0.022.40–1,–2/
    Φ3.33×0.062.33~2.73±1, ±2, ±36.35
    Φ1.90×0.065.800, –1, –2, –3>6.55
    湖南大学[78]20181.28×1.28×0.072.50+1
    –1
    3.15
    3.05
    内蒙古科技大学[79]2018Φ5.60×0.055.50~6.10
    5.65~6.10
    ±1
    ±2
    0
    9.15
    4.05
    7.45
    电子科技大学[33]20194.85×4.85×0.1413.50~16.70–1, –2/
    韩国牧园大学[85]20197.50×7.5018.00+5/
    北京邮电大学[81]2019Φ1.00×0.021.55±1, +2/
    喇叭上海交通大学[89]2015Φ4.002.200, ±1, ±2, ±3, ±48.75
    国防科技大学[90]2016Φ10.009.900, +1, +2, +3, +4, +5, +6, +7/
    浙江大学[92]20168.86×9.06×0.029.700, ±18.48
    电子科技大学[91]2018Φ0.80×0.342.450, +1, +2, +3/
    偶极子瑞典乌普萨拉大学[43,70]2007Φ4.001.00+1, +2, +4/
    2010Φ1.502.40+1,+2/
    华南理工大学[71]20171.76×1.76×0.012.10~2.70±1/
    Vivaldi北京理工大学[87]2013Φ1.57×1.206.000,±1,±2,±3,+47.00
    电子科技大学[88]2018Φ0.51×0.402.70~2.900, ±2/
    谐振腔华中科技大学[93]2016Φ1.00×0.163.50+1, +2/
    表面等离子体激元东南大学[94]2018Φ3.20×0.065.50
    5.80
    6.00
    6.30
    6.60
    –2
    –1
    0
    +1
    +2
    /
    单臂螺旋西安电子科技大学[95]2018Φ5.33×0.473.40~4.70+1, +2, +38.50
    下载: 导出CSV

    表  4  产生OAM波的超表面天线及性能

    Table  4.   The metasurface antennas and their properties for generating OAM waves

    天线类型单位时间天线尺寸(λ0)工作频率(GHz)OAM模式增益(dB)
    反射型超表面西安电子科技大学[98-104]201610.00×10.00×0.125.801; 2; 4/
    201610.00×10.00×0.125.80x极化1, y极化2/
    201610.00×10.00×0.075.50~6.501, 1; 1, 2/
    201710.00×10.00×0.075.801, 2/
    201812.60×12.60×0.2210.001/
    20188.82×8.82×0.16
    14.70×14.70×0.26
    6.00
    10.00
    1, –1(±30°)
    1, –1(±30°)
    17.7
    19.8
    201810.50×10.50×0.139.00~11.00119.9
    衡阳师范学院[107]20176.72×6.72×0.136.95~18.001; 2/
    浙江大学[108]2017Φ7.00×0.1010.000; 1; 210
    东南大学[105]201812.50×12.50×3.0040.25–1/
    安徽大学[106]20192.38×2.38×0.075.00~6.30–1, 0, 111.05
    南京航空航天大学[109]2019Φ6.46×0.1518.00~42.001, 3/
    北京邮电大学[110]2019Φ15.00×0.105.00~7.50417.93
    华南理工大学[111]20193.87×3.87×0.115.801; 2; 3; 415.4
    中国科学院[112]20198.50×8.50×0.10
    4.20×4.20×0.05
    5.20
    10.50~12.00
    1
    2
    /
    合肥工业大学[113]20193.50×3.50×0.10300.00–1, –2, –3, 1, 2, 3>20
    透射型超表面北京大学[114]20155.00×5.00×0.0811.802/
    香港大学[119,120]20179.60×9.60×0.0517.852; 4/
    20174.58×4.58×0.0517.85–1, –2, 0, 1, 2/
    浙江大学[121]20186.90×7.30×2.6010.00–1, –2, –3, –4 1, 2, 3, 4/
    南京理工大学[126]20189.40×9.40×0.7632.90~36.80x极化–1, y极化215
    西安电子科技大学[115-118]201718.60×18.60×0.6810.002/
    20184.67×4.67×0.1510.00114.5
    20189.20×9.20×0.2313.00~15.00x极化0, y极化126, 20
    20194.80×4.80×0.209.60~10.321; 2; 3/
    上海交通大学[122]20196.00×6.00×0.0510.001; 2/
    哈尔滨工业大学[123]20198.00×8.00×0.1510.00~11.301/
    空军工程大学[124]20194.88×4.88×0.1414.001/
    中国科学院[125]20195.25×5.25×0.1010.00210.85
    全息超表面香港大学[127]20163.50×3.50×0.106.202; 4/
    西安电子科技大学[128,129]201920.20×20.20×0.1120.00–1, 1(±30°)/
    201920.20×20.20×0.1120.001; 2; 3/
    数字编码型超表面西安电子科技大学[130,131]20186.30×6.30×0.044.751, 2/
    20186.67×6.67×0.045.001(0°, 30°)
    2(0°, 20°)
    /
    空军工程大学[132-134]20189.00×9.00×0.066.001/
    20188.84×8.84×0.088.50x-极化–2, 2
    y-极化–1, 1
    /
    20195.85×5.85×0.077.10~7.50
    7.00~7.50
    –1
    1
    14.7
    11.1
    东南大学[135-137]201712.00×12.00×0.1014.50~15.501(±30°)/
    2017Φ15.00×0.1515.00x-极化1
    y-极化–1
    /
    20194.80×4.80×0.0510.001, –1/
    下载: 导出CSV
  • [1] WILLNER A E, HUANG H, YAN Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66–106. doi: 10.1364/AOP.7.000066
    [2] POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A, 1909, 82(557): 560–567. doi: 10.1098/rspa.1909.0060
    [3] BETH R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115–125. doi: 10.1103/PhysRev.50.115
    [4] NYE J F and BERRY M V. Dislocations in wave trains[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1974, 336(1605): 165–190. doi: 10.1098/rspa.1974.0012
    [5] BERRY M V, NYE J F, and WRIGHT F J. The elliptic umbilic diffraction catastrophe[J]. Philosophical Transactions of the Royal Society A: Mathematical and Physical Sciences, 1979, 291(1382): 453–484. doi: 10.1098/rsta.1979.0039
    [6] SOLUYANOV A A and VANDERBILT D. Wannier representation of ${\mathbb {Z}}_2$ topological insulators[J]. Physical Review B, 2011, 83(3): 035108. doi: 10.1103/PhysRevB.83.035108
    [7] ABANIN D A, KITAGAWA T, BLOCH I, et al. Interferometric approach to measuring band topology in 2D optical lattices[J]. Physical Review Letters, 2013, 110(16): 165304. doi: 10.1103/PhysRevLett.110.165304
    [8] BERRY M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(2): 259–268. doi: 10.1088/1464-4258/6/2/018
    [9] BERRY M V and WILKINSON M. Diabolical points in the spectra of triangles[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1984, 392(1802): 15–43. doi: 10.1098/rspa.1984.0022
    [10] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1984, 392(1802): 45–57. doi: 10.1098/rspa.1984.0023
    [11] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [12] MEHMOOD M Q, MEI Shengtao, HUSSAIN S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533–2539. doi: 10.1002/adma.201504532
    [13] TAO S H, YUAN X C, LIN J, et al. Sequence of focused optical vortices generated by a spiral fractal zone plate[J]. Applied Physics Letters, 2006, 89(3): 031105. doi: 10.1063/1.2226995
    [14] OSTROVSKY A S, RICKENSTORFF-PARRAO C, and ARRIZÓN V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534–536. doi: 10.1364/OL.38.000534
    [15] GUO Zhongyi, QU Shiliang, and LIU Shutian. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Optics Communications, 2007, 273(1): 286–289. doi: 10.1016/j.optcom.2006.12.023
    [16] CARPENTIER A V, MICHINEL H, SALGUEIRO J R, et al. Making optical vortices with computer-generated holograms[J]. American Journal of Physics, 2008, 76(10): 916–921. doi: 10.1119/1.2955792
    [17] COJOC D, GARBIN V, FERRARI E, et al. Laser trapping and micro-manipulation using optical vortices[J]. Microelectronic Engineering, 2005, 78/79: 125–131. doi: 10.1016/j.mee.2004.12.017
    [18] LI Yan, GUO Zhongyi, and QU Shiliang. Living cell manipulation in a microfluidic device by femtosecond optical tweezers[J]. Optics and Lasers in Engineering, 2014, 55: 150–154. doi: 10.1016/j.optlaseng.2013.11.001
    [19] ZHU Lie, GUO Zhongyi, XU Qiang, et al. Calculating the torque of the optical vortex tweezer to the ellipsoidal micro-particles[J]. Optics Communications, 2015, 354: 34–39. doi: 10.1016/j.optcom.2015.05.062
    [20] LIU Changxia, GUO Zhongyi, LI Yan, et al. Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers[J]. Journal of Optics, 2015, 17(3): 035402. doi: 10.1088/2040-8978/17/3/035402
    [21] RUI Guanghao, WANG Xiaoyan, and CUI Yiping. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam[J]. Optics Express, 2015, 23(20): 25707–25716. doi: 10.1364/OE.23.025707
    [22] RAN Lingling, QU Shiliang, and GUO Zhongyi. Surface mico-structures on amorphous alloys induced by vortex femtosecond laser pulses[J]. Chinese Physics B, 2010, 19(3): 034204. doi: 10.1088/1674-1056/19/3/034204
    [23] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529
    [24] GUO Zhongyi, QU Shiliang, SUN Zhenghe, et al. Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses[J]. Chinese Physics B, 2008, 17(11): 4199–4203. doi: 10.1088/1674-1056/17/11/040
    [25] FRANKE-ARNOLD S, BARNETT S M, PADGETT M J, et al. Two-photon entanglement of orbital angular momentum states[J]. Physical Review A, 2002, 65(3): 033823. doi: 10.1103/PhysRevA.65.033823
    [26] KU Chenda, HUANG Weilun, HUANG J S, et al. Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral[J]. IEEE Photonics Journal, 2013, 5(3): 4800409. doi: 10.1109/JPHOT.2013.2261802
    [27] CHENG Mingjian, GUO Lixin, LI Jiangting, et al. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America A, 2016, 33(8): 1442–1450. doi: 10.1364/JOSAA.33.001442
    [28] GAFFOGLIO R, CAGLIERO A, VECCHI G, et al. Vortex waves and channel capacity: Hopes and reality[J]. IEEE Access, 2017, 6: 19814–19822.
    [29] ZHANG Zhuofan, ZHENG Shilie, ZHANG Weite, et al. Experimental demonstration of the capacity gain of plane spiral OAM-based MIMO system[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(8): 757–759. doi: 10.1109/LMWC.2017.2723719
    [30] ARYA S and CHUNG Y H. High-performance and high-capacity ultraviolet communication with orbital angular momentum[J]. IEEE Access, 2019, 7: 116734–116740. doi: 10.1109/ACCESS.2019.2936617
    [31] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14: 033001. doi: 10.1088/1367-2630/14/3/033001
    [32] PARK W, WANG Lei, BRÜNS H D, et al. Introducing a mixed-mode matrix for investigation of wireless communication related to orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1719–1728. doi: 10.1109/TAP.2018.2889033
    [33] ZHANG Yiming and LI Jialin. An orbital angular momentum-based array for in-band full-duplex communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 417–421. doi: 10.1109/LAWP.2019.2893035
    [34] LIU Dandan, GUI Liangqi, ZHANG Zixiao, et al. Multiplexed OAM wave communication with two-OAM-mode antenna systems[J]. IEEE Access, 2019, 7: 4160–4166. doi: 10.1109/ACCESS.2018.2886553
    [35] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [36] YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630
    [37] LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554
    [38] WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
    [39] ZHAO Mingyang, GAO Xinlu, XIE Mutong, et al. Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam[J]. Optics Letters, 2016, 41(11): 2549–2552. doi: 10.1364/OL.41.002549
    [40] GONG Ting, CHENG Yongqiang, LI Xiang, et al. Micromotion detection of moving and spinning object based on rotational Doppler shift[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 843–845. doi: 10.1109/LMWC.2018.2858552
    [41] WANG Dangdang, CHEN Danyang, LUAN Huashan, et al. A new method for transcranial vortex microwave beam imaging[C]. Proceedings of 2018 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2018: 1–3.
    [42] TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188.
    [43] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    [44] 李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12.

    LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12.
    [45] 唐玥, 毛天, 江冰. 多分辨率复合数字阵列天线的设计与实验[J]. 雷达学报, 2016, 5(3): 265–270. doi: 10.12000/JR16005

    TANG Yue, MAO Tian, and JIANG Bing. Design and experiment of multi-resolution composite digital array antenna[J]. Journal of Radars, 2016, 5(3): 265–270. doi: 10.12000/JR16005
    [46] 郑士昆, 冀有志, 崔兆云, 等. 环境一号C星SAR天线设计与分析[J]. 雷达学报, 2014, 3(3): 266–273. doi: 10.3724/SP.J.1300.2014.14040

    ZHENG Shikun, JI Youzhi, CUI Zhaoyun, et al. Design and analysis of HJ-1-C satellite SAR antenna[J]. Journal of Radars, 2014, 3(3): 266–273. doi: 10.3724/SP.J.1300.2014.14040
    [47] 李烈辰, 李道京, 黄平平. 基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像[J]. 雷达学报, 2016, 5(1): 109–117. doi: 10.12000/JR14159

    LI Liechen, LI Daojing, and HUANG Pingping. Airship sparse array antenna radar real aperture imaging based on compressed sensing and sparsity in transform domain[J]. Journal of Radars, 2016, 5(1): 109–117. doi: 10.12000/JR14159
    [48] 黄平平, 谭维贤, 苏莹, 等. 直升机载弧形阵列MIMO微波成像技术研究[J]. 雷达学报, 2015, 4(1): 11–19. doi: 10.12000/JR15005

    HUANG Pingping, TAN Weixian, SU Ying, et al. Research on helicopter-borne MIMO microwave imaging technology based on arc antenna array[J]. Journal of Radars, 2015, 4(1): 11–19. doi: 10.12000/JR15005
    [49] 刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46–55. doi: 10.12000/JR17100

    LIU Junfeng, LIU Shuo, FU Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46–55. doi: 10.12000/JR17100
    [50] GORI F, GUATTARI G, and PADOVANI C. Bessel-gauss beams[J]. Optics Communications, 1987, 64(6): 491–495. doi: 10.1016/0030-4018(87)90276-8
    [51] XU Jianchun, ZHAO Mingyang, ZHANG Ru, et al. A wideband F-shaped microstrip antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 829–832. doi: 10.1109/LAWP.2016.2606118
    [52] BARBUTO M, TROTTA F, BILOTTI F, et al. Circular polarized patch antenna generating orbital angular momentum[J]. Progress in Electromagnetics Research, 2014, 148: 23–30. doi: 10.2528/PIER14050204
    [53] GUO Chong, ZHAO Xunwang, ZHU Cheng, et al. An OAM patch antenna design and its array for higher order OAM mode generation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(5): 816–820. doi: 10.1109/LAWP.2019.2900265
    [54] LI Weiwen, ZHANG Liangcai, ZHU Jianbin, et al. Constructing dual-frequency OAM circular patch antenna using characteristic mode theory[J]. Journal of Applied Physics, 2019, 126(6): 064501. doi: 10.1063/1.5100631
    [55] ZHANG Zongtang, XIAO Shaoqiu, LI Yan, et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 521–524. doi: 10.1109/LAWP.2016.2586975
    [56] DANG Weiguo, ZHU Yongzhong, YU Yang, et al. Double-OAM-mode resistor loaded microstrip antenna with a top dielectric layer[J]. IEICE Electronics Express, 2018, 15(12): 20180370. doi: 10.1587/elex.15.20180370
    [57] SHEN Fei, MU Jiangnan, GUO Kai, et al. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5763–5771. doi: 10.1109/TAP.2019.2922545
    [58] BARBUTO M, BILOTTI F, and TOSCANO A. Patch antenna generating structured fields with a möbius polarization state[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1345–1348. doi: 10.1109/LAWP.2016.2634081
    [59] ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885
    [60] ZHANG Zhuofan, ZHENG Shilie, JIN Xiaofeng, et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 8–11. doi: 10.1109/LAWP.2016.2552227
    [61] ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Four-OAM-mode antenna with traveling-wave ring-slot structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 194–197. doi: 10.1109/LAWP.2016.2569540
    [62] MAO Fuchun, HUANG Ming, LI Tinghua, et al. Broadband generation of orbital angular momentum carrying beams in RF regimes[J]. Progress in Electromagnetics Research, 2017, 160: 19–27. doi: 10.2528/PIER17082302
    [63] DANG Weiguo, ZHU Yongzhong, YU Yang, et al. A miniaturized dual-Orbital-Angular-Momentum (OAM)–mode helix antenna[J]. IEEE Access, 2018, 6: 57056–57060. doi: 10.1109/ACCESS.2018.2873082
    [64] YI Ziqiang, TIAN Shuai, LIU Yafei, et al. Multimode orbital angular momentum antenna based on four-arm planar spiral[J]. Electronics Letters, 2019, 55(16): 875–876. doi: 10.1049/el.2019.1606
    [65] WANG Lulu, CHEN Huiyong, GUO Kai, et al. An inner- and outer-fed dual-arm archimedean spiral antenna for generating multiple orbital angular momentum modes[J]. Electronics, 2019, 8(2): 251. doi: 10.3390/electronics8020251
    [66] SHEN Fei, MU Jiangnan, GUO Kai, et al. Generation of continuously variable-mode vortex electromagnetic waves with three-dimensional helical antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1091–1095. doi: 10.1109/LAWP.2019.2907931
    [67] YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601
    [68] CHEO B, RUMSEY V, and WELCH W. A solution to the frequency-independent antenna problem[J]. IEEE Transactions on Antennas and Propagation, 1961, 9(6): 527–534. doi: 10.1109/TAP.1961.1145057
    [69] SIVAN-SUSSMAN R. Various modes of the equiangular spiral antenna[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(5): 533–539. doi: 10.1109/TAP.1963.1138097
    [70] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [71] LIU Baiyang, CUI Yuehui, and LI Ronglin. A broadband dual-polarized dual-OAM-mode antenna array for OAM communication[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 744–747. doi: 10.1109/LAWP.2016.2601615
    [72] BAI Q, TENNANT A, and ALLEN B. Experimental circular phased array for generating OAM radio beams[J]. Electronics Letters, 2014, 50(20): 1414–1415. doi: 10.1049/el.2014.2860
    [73] WEI Wenlong, MAHDJOUBI K, BROUSSEAU C, et al. Generation of OAM waves with circular phase shifter and array of patch antennas[J]. Electronics Letters, 2015, 51(6): 442–443. doi: 10.1049/el.2014.4425
    [74] SPINELLO F, MARI E, OLDONI M, et al. Experimental near field OAM-based communication with circular patch array[J]. Physics, 2015, arXiv: 1507.06889.
    [75] DENG Changjiang, ZHANG Kai, and FENG Zhenghe. Generating and measuring tunable orbital angular momentum radio beams with digital control method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 899–902. doi: 10.1109/TAP.2016.2632532
    [76] GUO Zhigui and YANG Guomin. Radial uniform circular antenna array for dual-mode OAM communication[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 404–407. doi: 10.1109/LAWP.2016.2581204
    [77] LI Hui, KANG Le, WEI Feng, et al. A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3022–3025. doi: 10.1109/LAWP.2017.2758520
    [78] LIU Qiang, CHEN Zhining, LIU Yuanan, et al. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1796–1804. doi: 10.1109/TAP.2018.2803757
    [79] WANG Yanyang, DU Yongxing, QIN Ling, et al. An electronically mode reconfigurable orbital angular momentum array antenna[J]. IEEE Access, 2018, 6: 64603–64610. doi: 10.1109/ACCESS.2018.2877782
    [80] KANG Le, LI Hui, ZHOU Jinzhu, et al. A mode-reconfigurable orbital angular momentum antenna with simplified feeding scheme[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4866–4871. doi: 10.1109/TAP.2019.2916595
    [81] BI Ke, XU Jianchun, YANG Daquan, et al. Generation of orbital angular momentum beam with circular polarization ceramic antenna array[J]. IEEE Photonics Journal, 2019, 11(2): 7901508.
    [82] XI Rui, LIU Haixia, and LI Long. Generation and analysis of high-gain orbital angular momentum vortex wave using circular array and parasitic EBG with oblique incidence[J]. Scientific Reports, 2017, 7(1): 17363. doi: 10.1038/s41598-017-17793-1
    [83] BAI Xudong, LIANG Xianling, SUN Yuntao, et al. Experimental array for generating dual circularly-polarized dual-mode OAM radio beams[J]. Scientific Reports, 2017, 7: 40099. doi: 10.1038/srep40099
    [84] QIN Fan, LI Lihong, LIU Yi, et al. A four-mode OAM antenna array with equal divergence angle[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1941–1945. doi: 10.1109/LAWP.2019.2934524
    [85] CHO Y H and BYUN W J. Analysis of a uniform rectangular array for generation of arbitrary Orbital Angular Momentum (OAM) modes[J]. Electronics Letters, 2019, 55(9): 503–504. doi: 10.1049/el.2019.0190
    [86] GONG Yinghui, WANG R, DENG Yunkai, et al. Generation and transmission of OAM-carrying vortex beams using circular antenna array[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2940–2949. doi: 10.1109/TAP.2017.2695526
    [87] DENG Changjiang, CHEN Wenhua, ZHANG Zhijun, et al. Generation of OAM radio waves using circular Vivaldi antenna array[J]. International Journal of Antennas and Propagation, 2013, 2013: 847859.
    [88] YANG Tianming, YANG Deqiang, WANG Boning, et al. Experimentally validated, wideband, compact, OAM antennas based on circular Vivaldi antenna array[J]. Progress in Electromagnetics Research, 2018, 80: 211–219. doi: 10.2528/PIERC17110702
    [89] BAI Xudong, LIANG Xianling, JIN Ronghong, et al. Generation of OAM radio waves with three polarizations using circular horn antenna array[C]. Proceedings of the 2015 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 2015.
    [90] LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [91] YANG Yang, XU Jin, YIN Hairong, et al. Study of a water-immersed orbital angular momentum circular antenna array[C]. Proceedings of 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 527–528.
    [92] XU Chen, ZHENG Shilie, ZHANG Weite, et al. Free-space radio communication employing OAM multiplexing based on Rotman lens[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 738–740. doi: 10.1109/LMWC.2016.2597262
    [93] AKRAM M R, GUI Liangqi, and LIU Dandan. OAM radio waves generation using dielectric resonator antenna array[C]. Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility, Shenzhen, China, 2016: 591–593.
    [94] YIN Jiayuan, REN Jian, ZHANG Lei, et al. Microwave vortex-beam emitter based on spoof surface Plasmon polaritons[J]. Laser & Photonics Reviews, 2018, 12(3): 1600316.
    [95] LI Long and ZHOU Xiaoxiao. Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves[J]. Scientific Reports, 2018, 8: 5128. doi: 10.1038/s41598-018-23415-1
    [96] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [97] ZHANG Haochi, Zhang Qian, LIU Junfeng, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 2016, 6: 23396. doi: 10.1038/srep23396
    [98] YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786
    [99] YU Shixing, LI Long, SHI Guangming, et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain[J]. Applied Physics Letters, 2016, 108(12): 121903. doi: 10.1063/1.4944789
    [100] YU Shixing, LI Long, and SHI Guangming. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface[J]. Applied Physics Express, 2016, 9(8): 082202. doi: 10.7567/APEX.9.082202
    [101] YU Shixing, LI Long, and KOU Na. Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces[J]. Optical Materials Express, 2017, 7(9): 3312–3321. doi: 10.1364/OME.7.003312
    [102] MENG Xiangshuai, WU Jiaji, WU Zhensen, et al. Design of multiple-polarization reflectarray for orbital angular momentum wave in radio frequency[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2269–2273. doi: 10.1109/LAWP.2018.2873083
    [103] MENG Xiangshuai, WU Jiaji, WU Zhensen, et al. Dual-polarized reflectarray for generating dual beams with two different orbital angular momentum modes based on independent feeds in C- and X-bands[J]. Optics Express, 2018, 26(18): 23185–23195. doi: 10.1364/OE.26.023185
    [104] CHEN Guantao, JIAO Yongchang, and ZHAO Gang. A reflectarray for generating wideband circularly polarized orbital angular momentum vortex wave[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 182–186. doi: 10.1109/LAWP.2018.2885345
    [105] SHEN Yizhu, YANG Jiawei, MENG Hongfu, et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Applied Physics Letters, 2018, 112(14): 141901. doi: 10.1063/1.5023327
    [106] WU Jie, ZHANG Zhongxiang, REN Xin’gang, et al. A broadband electronically mode-reconfigurable orbital angular momentum metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1482–1486. doi: 10.1109/LAWP.2019.2920695
    [107] XU Hexiu, LIU Haiwen, LING Xiaohui, et al. Broadband vortex beam generation using multimode pancharatnam–berry metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7378–7382. doi: 10.1109/TAP.2017.2761548
    [108] ZHANG Youfei, LYU Yang, WANG Haogang, et al. Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 172–175. doi: 10.1109/LAWP.2017.2779269
    [109] DONG Xiaohang, SUN Hengyi, GU Changqing, et al. Generation of ultra-wideband multi-mode vortex waves based on monolayer reflective metasurface[J]. Progress in Electromagnetics Research, 2019, 80: 111–120. doi: 10.2528/PIERM19010504
    [110] AKRAM Z, LI Xiuping, QI Zihang, et al. Broadband high-order OAM reflective metasurface with high mode purity using subwavelength element and circular aperture[J]. IEEE Access, 2019, 7: 71963–71971. doi: 10.1109/ACCESS.2019.2919779
    [111] HUANG Huifen and LI Shuainan. High-efficiency planar reflectarray with small-size for OAM generation at microwave range[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 432–436. doi: 10.1109/LAWP.2019.2893321
    [112] JI Chen, SONG Jiakun, HUANG Cheng, et al. Dual-band vortex beam generation with different OAM modes using single-layer metasurface[J]. Optics Express, 2019, 27(1): 34–44. doi: 10.1364/OE.27.000034
    [113] YIN Zhiping, ZHENG Qun, GUO Kai, et al. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array[J]. Applied Sciences, 2019, 9(15): 2949. doi: 10.3390/app9152949
    [114] TAN Yunhua, LI Lianlin, and RUAN Henxin. An efficient approach to generate microwave vector-vortex fields based on metasurface[J]. Microwave and Optical Technology Letters, 2015, 57(7): 1708–1713. doi: 10.1002/mop.29156
    [115] KOU Na, YU Shixing, and LI Long. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1): 016701. doi: 10.7567/APEX.10.016701
    [116] QIN Fan, WAN Lulan, LI Lihong, et al. A transmission metasurface for generating OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1793–1796. doi: 10.1109/LAWP.2018.2867045
    [117] QIN Fan, GAO S, CHENG Wenchi, et al. A high-gain transmitarray for generating dual-mode OAM beams[J]. IEEE Access, 2018, 6: 61006–61013. doi: 10.1109/ACCESS.2018.2875680
    [118] YI Jianjia, LI Die, FENG Rui, et al. Design and validation of a metasurface lens for converging vortex beams[J]. Applied Physics Express, 2019, 12(8): 084501. doi: 10.7567/1882-0786/ab2c1d
    [119] CHEN M L, JIANG Lijun, and SHA W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
    [120] CHEN M L N, JIANG Lijun, and SHA W E I. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439
    [121] WANG Xinyue, CHEN Yiling, ZHENG Shilie, et al. Reconfigurable OAM antenna based on sub-wavelength phase modulation structure[J]. IET Microwaves, Antennas & Propagation, 2018, 12(3): 354–359.
    [122] AKRAM M R, BAI Xudong, JIN Ronghong, et al. Photon spin Hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4650–4658. doi: 10.1109/TAP.2019.2905777
    [123] WANG Yuxiang, ZHANG Kuang, YUAN Yueyi, et al. Generation of high-efficiency vortex beam carrying OAM mode based on miniaturized element frequency selective surfaces[J]. IEEE Transactions on Magnetics, 2019, 55(10): 7501104.
    [124] LIU Kaiyue, WANG Guangming, LI Zhong, et al. A multi-functional vortex beam generator based on transparent anisotropic metasurface[J]. Optics Communications, 2019, 435: 311–318. doi: 10.1016/j.optcom.2018.11.067
    [125] MA Lina, CHEN Chang, ZHOU Lingyun, et al. Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity[J]. Applied Physics Letters, 2019, 114(8): 081603. doi: 10.1063/1.5081514
    [126] GUAN Ling, HE Zi, DING Dazhi, et al. Polarization-controlled shared-aperture metasurface for generating a vortex beam with different modes[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7455–7459. doi: 10.1109/TAP.2018.2867028
    [127] CHEN M L N, JIANG Lijun, and SHA W E I. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency[J]. Journal of Applied Physics, 2016, 119(6): 064506. doi: 10.1063/1.4941696
    [128] MENG Xiangshuai, WU Jiaji, WU Zhensen, et al. Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain[J]. Applied Physics Letters, 2019, 114(9): 093504. doi: 10.1063/1.5087994
    [129] MENG Xiangshuai, WU Jiaji, WU Zhensen, et al. Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum[J]. Optics Letters, 2019, 44(6): 1452–1455. doi: 10.1364/OL.44.001452
    [130] HAN Jiaqi, LI Long, YI Hao, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 2018, 8(11): 3470–3478. doi: 10.1364/OME.8.003470
    [131] HAN Jiaqi, LI Long, YI Hao, et al. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface[J]. Japanese Journal of Applied Physics, 2018, 57(12): 120303. doi: 10.7567/JJAP.57.120303
    [132] ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Radiation performance synthesis for OAM vortex wave generated by reflective metasurface[J]. IEEE Access, 2018, 6: 28691–28701. doi: 10.1109/ACCESS.2018.2839099
    [133] ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Multiple OAM vortex beams generation using 1-bit metasurface[J]. Optics Express, 2018, 26(19): 24804–24815. doi: 10.1364/OE.26.024804
    [134] ZHANG Di, CAO Xiangyu, GAO Jun, et al. A shared aperture 1 bit metasurface for orbital angular momentum multiplexing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 566–570. doi: 10.1109/LAWP.2019.2893492
    [135] ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447–36455.
    [136] MA Qian, SHI Chuanbo, BAI Guodong, et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201700548
    [137] WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi: 10.1002/adom.201801429
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  10671
  • HTML全文浏览量:  4376
  • PDF下载量:  990
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-02
  • 修回日期:  2019-10-18
  • 网络出版日期:  2019-10-01

目录

    /

    返回文章
    返回