基于三特征预测的海杂波中小目标检测方法

董云龙 张兆祥 丁昊 黄勇 刘宁波

董云龙, 张兆祥, 丁昊, 等. 基于三特征预测的海杂波中小目标检测方法[J]. 雷达学报, 2023, 12(4): 762–775. doi: 10.12000/JR23037
引用本文: 董云龙, 张兆祥, 丁昊, 等. 基于三特征预测的海杂波中小目标检测方法[J]. 雷达学报, 2023, 12(4): 762–775. doi: 10.12000/JR23037
DONG Yunlong, ZHANG Zhaoxiang, DING Hao, et al. Target detection in sea clutter using a three-feature prediction-based method[J]. Journal of Radars, 2023, 12(4): 762–775. doi: 10.12000/JR23037
Citation: DONG Yunlong, ZHANG Zhaoxiang, DING Hao, et al. Target detection in sea clutter using a three-feature prediction-based method[J]. Journal of Radars, 2023, 12(4): 762–775. doi: 10.12000/JR23037

基于三特征预测的海杂波中小目标检测方法

DOI: 10.12000/JR23037
基金项目: 国家自然科学基金(62101583, 61871392),泰山学者工程(tsqn202211246)
详细信息
    作者简介:

    董云龙,博士,教授,主要研究方向为多传感器信息融合、雷达目标检测与跟踪

    张兆祥,硕士生,主要研究方向为海杂波中目标检测

    丁 昊,博士,副教授,主要研究方向为海杂波特性认知与抑制、海杂波中目标检测

    黄 勇,博士,副教授,主要研究方向为雷达目标检测、MIMO雷达信号处理

    刘宁波,博士,副教授,主要研究方向为雷达信号智能处理、海上目标探测技术

    通讯作者:

    丁昊 hao3431@tom.com

    黄勇 huangyong2003@163.com

  • 责任主编:许述文 Corresponding Editor: XU Shuwen
  • 中图分类号: TN957.51

Target Detection in Sea Clutter Using a Three-feature Prediction-based Method(in English)

Funds: The National Natural Science Foundation of China (62101583, 61871392), The Taishan Scholars Program (tsqn202211246)
More Information
  • 摘要: 特征检测方法是解决海杂波中小目标检测问题的重要途径,其根据特征值是否在判决区域内判断目标有无,几乎不考虑特征间的时序信息。事实上,历史帧数据与当前帧数据的时序关联性,可以为当前帧特征值的计算提供丰富的先验信息。为此,该文提出了一种使用自回归(AR)模型在特征域对雷达回波进行时序建模和预测的方法,以利用历史帧特征的先验信息。首先,使用AR模型对平均幅度(AA)、相对多普勒峰高(RDPH)、频谱峰均比(FPAR)特征序列进行建模和1步预测分析,验证了对特征序列进行AR建模和预测的可行性。其次,提出利用历史帧特征时序信息作为先验信息的特征值提取方法,在此基础上,提出一种基于三特征预测的小目标检测方法,该方法可有效利用AA, RDPH和FPAR的历史帧特征时序信息。最后,使用实测数据验证了所提方法的有效性。

     

  • 图  1  帧间特征值的时序关系示意图

    Figure  1.  Schematic diagram of the temporal relationship of the features between frames

    图  2  3种特征的平均自相关系数与平均偏自相关系数

    Figure  2.  Average autocorrelation coefficient and average partial autocorrelation coefficient for the three features

    图  3  BIC估计的3种特征序列的AR模型最佳阶数

    Figure  3.  Optimal order of AR models for the three feature sequences estimated by the BIC

    图  4  3种特征的AR模型拟合结果(海杂波)

    Figure  4.  AR model fitting results for three features (sea clutter)

    图  5  3种特征的AR模型1步预测结果

    Figure  5.  1-step prediction results of AR models with three features

    图  6  3种特征的AR模型拟合结果(含目标回波)

    Figure  6.  AR model fitting results for three features (target echo)

    图  7  利用先验信息的特征提取方法示意图

    Figure  7.  The schematic diagram of the feature extraction method using prior information

    图  8  基于三特征预测的检测器工作流程图

    Figure  8.  The workflow diagram of the detector based on three-feature prediction

    图  9  两种特征空间内的巴氏距离对比

    Figure  9.  Comparison of B-distance in two feature spaces

    图  10  加权系数对检测概率的影响

    Figure  10.  The effect of weighting coefficient on detection probabilities

    图  11  4种检测器的检测概率

    Figure  11.  Detection probabilities of the four detectors

    图  1  Schematic diagram of the temporal relationship of the features between frames

    图  2  Average autocorrelation coefficient and average partial autocorrelation coefficient for the three features

    图  3  Optimal order of AR models for the three feature sequences estimated by the BIC

    图  4  AR model fitting results for three features (sea clutter)

    图  5  1-step prediction results of AR models with three features

    图  6  AR model fitting results for three features (target echo)

    图  7  Flowchart of the feature extraction method using prior information

    图  8  Workflow diagram of the detector based on three-feature prediction

    图  9  Comparison of B-distance in two feature spaces

    图  10  Effect of weighting coefficient on detection probabilities

    图  11  Detection probabilities of the four detectors

    表  1  3种特征的预测结果

    Table  1.   Predicted results of the three features

    数据平均幅度相对多普勒峰高频谱峰均比
    误差均值误差标准差误差(%)误差均值误差标准差误差(%)误差均值误差标准差误差(%)
    #170.00020.21677.580.00490.171611.460.07462.639415.51
    #260.00740.179010.900.00670.198913.110.22544.213116.72
    #300.00870.157610.050.00690.202913.450.23534.088917.54
    #310.01140.176911.420.00690.200213.210.24624.132517.43
    #400.01350.210112.100.00720.203613.360.28314.413118.25
    #540.00480.199111.530.00550.182112.590.15363.112715.31
    #2800.01140.175110.870.00590.186412.210.23164.269917.04
    #3100.00640.12807.710.00460.172211.260.10232.370713.11
    #3110.00670.13308.570.00510.185012.090.12162.709514.12
    #3200.00550.12818.040.00650.203513.750.12292.673314.34
    下载: 导出CSV

    表  2  1993年IPIX雷达数据说明

    Table  2.   The description of IPIX radar data collected in 1993

    序号数据名称浪高(m)风速(km/h)目标所在单元受影响单元
    1#172.2998, 10, 11
    2#261.1976, 8
    3#300.91976, 8
    4#310.91976, 8, 9
    5#401.0975, 6, 8
    6#540.72087, 9, 10
    7#2801.61087, 10
    8#3100.93376, 8, 9
    9#3110.93376, 8, 9
    10#3200.92876, 8, 9
    下载: 导出CSV

    表  3  重叠脉冲数对本文所提检测器的影响

    Table  3.   The effect of the number of overlapping pulses on the detector proposed in this paper

    重叠脉冲数#30#31#310
    HHVVHVHHVVHVHHVVHV
    00.2700.3810.4170.3160.5190.5410.5730.2550.604
    640.2810.3710.3690.3240.5350.5740.5960.2890.597
    1280.3450.4570.4850.4120.5780.6370.6020.3100.649
    下载: 导出CSV

    表  4  历史帧窗口长度对本文所提检测器的影响

    Table  4.   The effect of historical frame window length on the detector proposed in this paper

    历史帧窗口长度#30#31#310
    HHVVHVHHVVHVHHVVHV
    250.3040.4330.4350.3960.5390.6280.6000.3050.641
    500.3170.4460.4620.4000.5610.6350.6020.3120.647
    1000.3450.4570.4850.4120.5780.6370.6020.3100.649
    下载: 导出CSV

    表  5  脉冲数对4种检测器的影响

    Table  5.   The effect of the number of pulses on the four detectors

    脉冲数检测器#17#26#320
    HHVVHVHHVVHVHHVVHV
    128一致性因子检测器[26]0.2720.0350.2140.1510.2340.2000.3630.1080.469
    文献[22]检测器0.5210.2370.5440.2860.3660.4730.5530.5560.825
    原三特征检测器0.5950.2570.5090.2110.3890.4660.6280.4870.754
    所提检测器0.6420.3040.5440.2810.4030.5280.7450.6740.855
    256一致性因子检测器[26]0.3680.0620.2200.1850.2810.2490.3190.1150.461
    文献[22]检测器0.5950.2020.5100.3610.5550.5780.6540.6930.840
    原三特征检测器0.6270.3100.5370.3430.5650.6450.6880.5940.763
    所提检测器0.7160.3890.6660.4740.5670.7010.7870.7480.873
    512一致性因子检测器[26]0.3450.0580.2150.2000.3140.2630.2210.1210.470
    文献[22]检测器0.6210.2010.5210.4410.5810.5900.7580.7640.855
    原三特征检测器0.6330.3530.6200.4250.6130.6860.6570.6250.845
    所提检测器0.7310.4280.7920.5440.6200.7470.8030.7830.908
    下载: 导出CSV

    表  1  Predicted results of the three features

    Data Average amplitude Relative Doppler peak height Frequency peak-to-average ratio
    Average error Error standard
    deviation
    Error (%) Average error Error standard
    deviation
    Error (%) Average error Error standard
    deviation
    Error (%)
    #17 0.0002 0.2167 7.58 0.0049 0.1716 11.46 0.0746 2.6394 15.51
    #26 0.0074 0.1790 10.90 0.0067 0.1989 13.11 0.2254 4.2131 16.72
    #30 0.0087 0.1576 10.05 0.0069 0.2029 13.45 0.2353 4.0889 17.54
    #31 0.0114 0.1769 11.42 0.0069 0.2002 13.21 0.2462 4.1325 17.43
    #40 0.0135 0.2101 12.10 0.0072 0.2036 13.36 0.2831 4.4131 18.25
    #54 0.0048 0.1991 11.53 0.0055 0.1821 12.59 0.1536 3.1127 15.31
    #280 0.0114 0.1751 10.87 0.0059 0.1864 12.21 0.2316 4.2699 17.04
    #310 0.0064 0.1280 7.71 0.0046 0.1722 11.26 0.1023 2.3707 13.11
    #311 0.0067 0.1330 8.57 0.0051 0.1850 12.09 0.1216 2.7095 14.12
    #320 0.0055 0.1281 8.04 0.0065 0.2035 13.75 0.1229 2.6733 14.34
    下载: 导出CSV

    表  2  The description of IPIX radar data collected in 1993

    Number Data name Wave height (m) Wind speed (km/h) Target cell Affected cell
    1 #17 2.2 9 9 8, 10, 11
    2 #26 1.1 9 7 6, 8
    3 #30 0.9 19 7 6, 8
    4 #31 0.9 19 7 6, 8, 9
    5 #40 1.0 9 7 5, 6, 8
    6 #54 0.7 20 8 7, 9, 10
    7 #280 1.6 10 8 7, 10
    8 #310 0.9 33 7 6, 8, 9
    9 #311 0.9 33 7 6, 8, 9
    10 #320 0.9 28 7 6, 8, 9
    下载: 导出CSV

    表  3  Effect of the number of overlapping pulses on the detector proposed in this paper

    Number of overlapping pulses #30 #31 #310
    HH VV HV HH VV HV HH VV HV
    0 0.270 0.381 0.417 0.316 0.519 0.541 0.573 0.255 0.604
    64 0.281 0.371 0.369 0.324 0.535 0.574 0.596 0.289 0.597
    128 0.345 0.457 0.485 0.412 0.578 0.637 0.602 0.310 0.649
    下载: 导出CSV

    表  4  The effect of historical frame window length on the detector proposed in this paper

    Historical frame window length #30 #31 #310
    HH VV HV HH VV HV HH VV HV
    25 0.304 0.433 0.435 0.396 0.539 0.628 0.600 0.305 0.641
    50 0.317 0.446 0.462 0.400 0.561 0.635 0.602 0.312 0.647
    100 0.345 0.457 0.485 0.412 0.578 0.637 0.602 0.310 0.649
    下载: 导出CSV

    表  5  The effect of the number of pulses on the four detectors

    Number of pulses Detector #17 #26 #320
    HH VV HV HH VV HV HH VV HV
    128 Consistency factor detector [ 26] 0.272 0.035 0.214 0.151 0.234 0.200 0.363 0.108 0.469
    Detector in Ref. [ 22] 0.521 0.237 0.544 0.286 0.366 0.473 0.553 0.556 0.825
    Original three-feature detector 0.595 0.257 0.509 0.211 0.389 0.466 0.628 0.487 0.754
    Proposed detector 0.642 0.304 0.544 0.281 0.403 0.528 0.745 0.674 0.855
    256 Consistency factor detector [ 26] 0.368 0.062 0.220 0.185 0.281 0.249 0.319 0.115 0.461
    Detector in Ref. [ 22] 0.595 0.202 0.510 0.361 0.555 0.578 0.654 0.693 0.840
    Original three-feature detector 0.627 0.310 0.537 0.343 0.565 0.645 0.688 0.594 0.763
    Proposed detector 0.716 0.389 0.666 0.474 0.567 0.701 0.787 0.748 0.873
    512 Consistency factor detector [ 26] 0.345 0.058 0.215 0.200 0.314 0.263 0.221 0.121 0.470
    Detector in Ref. [ 22] 0.621 0.201 0.521 0.441 0.581 0.590 0.758 0.764 0.855
    Original three-feature detector 0.633 0.353 0.620 0.425 0.613 0.686 0.657 0.625 0.845
    Proposed detector 0.731 0.428 0.792 0.544 0.620 0.747 0.803 0.783 0.908
    下载: 导出CSV
  • [1] 关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114.

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
    [2] 张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441.

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against k-distributed sea clutter for coherent radar systems[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441.
    [3] 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084.

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084.
    [4] LO T, LEUNG H, LITVA J, et al. Fractal characterisation of sea-scattered signals and detection of sea-surface targets[J]. IEE Proceedings F-Radar and Signal Processing, 1993, 140(4): 243–250. doi: 10.1049/ip-f-2.1993.0034.
    [5] FAN Yifei, TAO Mingliang, and SU Jia. Multifractal correlation analysis of autoregressive spectrum-based feature learning for target detection within sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108811. doi: 10.1109/TGRS.2021.3137466.
    [6] FAN Yifei, TAO Mingliang, SU Jia, et al. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1824–1828. doi: 10.1109/LGRS.2019.2912329.
    [7] BI Xiaowen, GUO Shenglong, YANG Yunxiu, et al. Adaptive target extraction method in sea clutter based on fractional fourier filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115609. doi: 10.1109/TGRS.2022.3192893.
    [8] SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260.
    [9] XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560.
    [10] 陈世超, 高鹤婷, 罗丰. 基于极化联合特征的海面目标检测方法[J]. 雷达学报, 2020, 9(4): 664–673. doi: 10.12000/JR20072.

    CHEN Shichao, GAO Heting, and LUO Feng. Target detection in sea clutter based on combined characteristics of polarization[J]. Journal of Radars, 2020, 9(4): 664–673. doi: 10.12000/JR20072.
    [11] YAN Kun, BAI Yu, WU H C, et al. Robust target detection within sea clutter based on graphs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7093–7103. doi: 10.1109/TGRS.2019.2911451.
    [12] 时艳玲, 姚婷婷, 郭亚星. 基于图连通密度的海面漂浮小目标检测[J]. 电子与信息学报, 2021, 43(11): 3185–3192. doi: 10.11999/JEIT201028.

    SHI Yanling, YAO Tingting, and GUO Yaxing. Floating small target detection based on graph connected density in sea surface[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3185–3192. doi: 10.11999/JEIT201028.
    [13] XIE Jianda and XU Xiaojian. Phase-feature-based detection of small targets in sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3507405. doi: 10.1109/LGRS.2021.3093620.
    [14] WU Xijie, DING Hao, LIU Ningbo, et al. A method for detecting small targets in sea surface based on singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110817. doi: 10.1109/TGRS.2021.3138488.
    [15] 关键, 伍僖杰, 丁昊, 等. 基于对角积分双谱的海面慢速小目标检测方法[J]. 电子与信息学报, 2022, 44(7): 2449–2460. doi: 10.11999/JEIT210408.

    GUAN Jian, WU Xijie, DING Hao, et al. A method for detecting small slow targets in sea surface based on diagonal integrated bispectrum[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2449–2460. doi: 10.11999/JEIT210408.
    [16] WU Xijie, DING Hao, LIU Ningbo, et al. Priori information-based feature extraction method for small target detection in sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115315. doi: 10.1109/TGRS.2022.3188046.
    [17] HAYKIN S, BAKKER R, and CURRIE B W. Uncovering nonlinear dynamics-the case study of sea clutter[J]. Proceedings of the IEEE, 2002, 90(5): 860–881. doi: 10.1109/JPROC.2002.1015011.
    [18] NOHARA T J and HAYKIN S. AR-based growler detection in sea clutter[J]. IEEE Transactions on Signal Processing, 1993, 41(3): 1259–1271. doi: 10.1109/78.205728.
    [19] 黄红梅. 应用时间序列分析[M]. 北京: 清华大学出版社, 2016: 17–57.

    HUANG Hongmei. Apply Time Series Analysis[M]. Beijing: Tsinghua University Press, 2016: 17–57.
    [20] 郑宁. 基于多源数据的高速铁路轨道几何异常状态检测方法研究[D]. [硕士论文], 北京交通大学, 2021: 22–40.

    ZHENG Ning. Research on high speed railway track geometric anomaly detection method based on multi­source data[D]. [Master dissertation], Beijing Jiaotong University, 2021: 22–40.
    [21] 范剑青, 姚琦伟, 陈敏, 译. 非线性时间序列: 建模、预报及应用[M]. 北京: 高等教育出版社, 2005: 21–92.

    FAN Jianqing, YAO Qiwei, CHEN Min. translation. Nonlinear Time Series: Modeling, Forecasting, and Applications[M]. Beijing: Higher Education Press, 2005: 21–92.
    [22] SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657.
    [23] LI Yuzhou, XIE Pengcheng, TANG Zeshen, et al. SVM-based sea-surface small target detection: A false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1225–1229. doi: 10.1109/LGRS.2019.2894385.
    [24] GUO Zixun and SHUI Penglang. Anomaly based sea-surface small target detection using K-nearest neighbor classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4947–4964. doi: 10.1109/TAES.2020.3011868.
    [25] The IPIX radar database[EB/OL]. http://soma.ece.mcmaster.ca/ipix/, 2021.
    [26] SHI Yanling, XIE Xiaoyan, and LI Dongchen. Range distributed floating target detection in sea clutter via feature-based detector[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1847–1850. doi: 10.1109/LGRS.2016.2614750.
  • 加载中
图(22) / 表(10)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回