-
摘要:
雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。
Abstract:Active radar remote sensing technology, with its capability of acquiring all-weather data, has great potential for agricultural monitoring. This technology can penetrate vegetation cover more deeply than optical sensors and has sensitivity to the shapes, structures, and dielectric constants of vegetation scatterers. In this paper, we discuss the applications of radar remote sensing in crop identification, cropland soil moisture inversion, crop growth parameter inversion, crop phenology retrieval, agricultural disaster monitoring, and crop yield estimation. We review several specific papers focusing these fields, and then describe the results obtained using information extracted from radar scatterometers and Synthetic Aperture Radar (SAR). Extracted SAR data include characterizations of backscattering, polarimetry, interferometry, and tomography. Lastly, we summarize the problems faced by radar applications in agriculture and consider the future trend of these applications.
-
表 1 地基雷达散射计研究现状总结
Table 1. Summary of studies using ground-based scatterometers
研究团队 散射计相关参数描述 应用类型(对象) 研究结论 参考
文献名称 参数描述 堪萨斯大学Ulaby
等团队MAPS 双极化(HH+VV);入射角可在0°~70°
之间变化,频率4~
8 GHz土壤水分 后向散射对于土壤水分的敏感性:HH>VV;后向散射对土壤水分的敏感性受到土壤表面粗糙度的影响明显,土壤表面的粗糙度可以通过频率和入射角的变化来表征,因此土壤水分反演受到频率和入射角的影响明显;当频率在4~8 GHz,入射角在5°~15°时,HH极化的后向散射几乎不受地表植被的影响,仅反映土壤水分的变化。 [16-18] 全极化(HH+VV+HV+VH);入射角可在0°~80°之间变化,频率4~8GHz 农作物分类制图(农作物包括:
玉米、高粱、大豆和苜蓿)极化特征对农作物结构变化敏感;农田的垄向对极化散射特征影响明显,其影响具有农作物类型依赖性;对于农作物结构变化的敏感性:VV>HH;农作物密度和入射角变化均会影响不同频率微波的后向散射强度;大入射角(30°~65°)和高频波段组合可以最有效的区分不同农作物类型。 [18] MAS 双极化(HH+VV);入射角可在7°~15°之间变化,频率2~
8 GHz裸土覆盖区土壤水分 土壤粗糙度会影响裸土覆盖区土壤水分的反演;通过优化散射计的系统参数可以降低土壤粗糙度的影响,推荐的组合是频率为4 GHz,入射角在7°~15°,极化方式为HH或VV。该参数在频率4~8 GHz之间的植被覆盖区的土壤水分反演中也适用,后向散射与土壤水分的最高相关性获得时频率为4.7 GHz,入射角为10°。 [18,20] 三极化(HH+VV+HV);入射角可在0°~80°之间变化,频率1~8 GHz 土壤水分、地表粗糙度、土壤结构 对于裸土覆盖区的土壤水分,结论与文献[20]相似,地表粗糙度的影响在频率为5 GHz,入射角在7°~17°时影响最小;在有农作物覆盖区的土壤水分反演中,后向散射与土壤水分的相关性在频率4.25 GHz,入射角为10°,极化为HH时最高,r=0.92;后向散射系数对土壤水分的估测力依赖于土壤水分在田间含水量中所占的比例,当其比例低于50%时,估测力低,在50%~150%之间时,估测力高。 [21-23] 双极化(HH+VV);入射角可在0°~70°之间变化,频率8~
18 GHz土壤水分和农作物识别(玉米、高粱、大豆和苜蓿) 除了与文献[18]相似的结论,还得出:采用VV的多频数据可以获得最好的农作物识别效果;入射角在30°~65°时可以将土壤水分在农作物识别中的影响降低到最小;低频小入射角数据可以获得更好的土壤水分反演结果。 [19] 荷兰ROVE
项目FM/CW X-(10 GHz)、Q(35 GHz);角度15°~80°,极化:VV, HH, VH, HV 农作物观测、土壤水分 农作物的后向散射系数受到极化方式、观测角度等影响明显;这种成像几何的影响具有农作物类型依赖性:例如入射角变化对甜菜影响不明显,但是对马铃薯的影响可达到–5 dB;此外当地表农作物冠层的覆盖率达到80%时,后向散射系数变化呈现饱和;X-波段可用于农作物的分类识别;多频数据联合观测有助于提高农作物冠层生物量、冠层含水量、覆盖度和农作物高度估测的精度;增大观测入射角可以提高冠层含水量的估测精度。 [24-28] 加拿大CCRS相关项目 FM/CW L-, C-, Ku(1.5, 5.2, 12.8 GHz);全极化;角度0°~85° 农作物识别与分类、土壤水分、农作物冠层水分、农作物残余 通过方差系数分析得出Ku-波段、HV极化、入射角范围在30°~60°,农作物生长29~30周时,可以得到最优的农作物识别效果;在农作物快速生长阶段,后向散射与每日冠层含水量变化相关性较高,农作物凋谢时,后向散射与每日土壤水分变化相关性较高,相关性同时受到频率的影响;HV对农田农作物残余变化敏感,并且不易受到观测方向或垄向的影响。 [29-33] 中国 地基微波散射计(FM /CW) C-;HH和VV 土壤水分土壤粗糙度 垄向使得与其平行的极化方式的后向散射系数增强;反演测得的粗糙度不同于光学方法得到的粗糙度。 [34,35] 微波散射计
(FM /CW)X-(9.375 GHz),角度为0°~48°,步进间隔为6°;全极化 土壤水分 X-波段HH极化在6°时对裸土含水量灵敏度最高,有植被覆盖的土壤水分反演中,X-波段比C-波段差;含水量一定时,后向散射系数随入射角增大而减小,变化率随粗糙度增加而减小;随着频率的增加,与粗糙度无关的入射角增大,频率为1.1 GHz时,入射角为7°,7.5 GHz时为10°。 [34,36,37] 其他 ComRAD 双极化,1.4 GHz辐射计;全极化
1.25 GHz农作物含水量(VWC) 在L-波段采用HH、VV、极化差系数(MPDI)、雷达植被指数(RVI)进行VWC反演中,HV效果最好。 [38-40] UF-LARS L-(1.25 GHz),全极化,入射角40° 土壤水分,农作物长势 采样时间间隔降低可以显著提高反演的土壤水分的精度,VV极化后向散射对农作物的垂直结构变化更敏感;在植被体散射为主导机制的土壤水分反演中,表面较光滑、土壤较干燥时,线性关系反演结果不确定较大。 [41,42] 表 2 星载散射计信息
Table 2. Major space-borne radar scatterometry and their basic information
卫星 传感器 波段 入射角 极化 服役时间 国家 Seasat SASS Ku 25°~55° HH, VV 1978-6—1978-10 美国 ERS-1 AMI C 18°~59° VV 1991-6—2000-3 欧空局 ERS-2 AMI C 18°~59° VV 1995-4— 欧空局 ADEOS-1 NSCAT Ku 18°~63° HH, VV 1996-8—1997-6 美国 QuickSCAT SeaWinds Ku 46°, 54° HH, VV 1999-7— 美国 ADEOS-2 NSCAT Ku 46°, 54° HH, VV 2002-12—2003-8 美国 SZ-4 CN/SCAT Ku 37° HH, VV 2002-12— 中国 MetOp-1 ASCAT C 25°~65° VV 2006-10— 欧空局 OceanSat-1 OSCAT-1 Ku 50°, 57° HH, VV 2009— 印度 HY-2A HY-2A Ku HH, VV 2010-8— 中国 OceanSat-2 OSCAT-2 Ku 50°, 57° HH, VV 2016— 印度 SMAP L- 2015-1—2015-7 美国 表 3 极化特征在农业中的应用现状
Table 3. Summary of studies using polarimetric characterization
应用类型 SAR参数描述 结果 参考文献 农作物分类与识别 Pauli分解参数,Stokes参数,
基于特征值、特征向量分解参数,
Freeman-Durden, Yamaguchi分解参数,Span-Pauli分解参数, $H {\text{-}} \overline A {\text{-}} \alpha$分解参数,Cloude分解参数(1)加入极化特征,可以有效提高分类精度;
(2)对于不同农作物的可区分性差异明显;
(3)在极化特征中加入时相特征可以有效提高农作物分类精度;
(4)加入极化分解特征比仅采用简单的线性极化组合的分类精度高;
(5)简缩极化特征的分类结果几乎可以达到全极化特征分类的精度水平。[3,65,66] 农田参数反演(土壤水分/地表粗糙度) (1)引入去极化率、同极化相关系数、相干性参数、散射熵和散射角等参数分析土壤水分和后向散射系数的变化关系;(2)采用极化分解的参数,主要包括Freeman-Durden和特征值分解的参数。 (1)利用多极化特征可降低采用单极化特征反演土壤水分中的不确定性,提高反演精度;
(2)利用极化分解的参数替代后向散射系数可以提高反演精度;
(3)引入极化参数后,反演结果受到农作物物候期和农作物类型的影响。[3,67] 农作物长势参数反演 极化合成和极化分解参数;
基于极化合成及分解参数发展的参数:如各种雷达植被指数、基准高度参数等。(1)生长参数包括LAI、生物量和农作物高度;
(2)X-、C-波段对LAI变化敏感,
(3)反演结果受到农作物物候期和农作物类型的影响;
(4)多种极化合成及分解的参数可以获得更高的农作物生长参数反演精度(目前已经用于农作物长势参数反演的参数约为30个)。[80-83] 农作物物候期划分 Cloude-Pottier分解参数、极化比、极化差值比、极化合成参数(极化度)、简缩极化后向散射系数及极化分解参数、Stokes参数 (1)主要采用时间序列数据进行物候期的划分或监测;
(2)方法包括利用分类和时相动态跟踪两类方法;
(3)用于监测的数据包括X-和C-波段。[9,84-88] 农作物灾害监测 极化指数(HH/VV, HH/HV, 表面散射/Span, 二次散射/Span) (1)不同极化特征对倒伏现象响应差异明显;
(2)极化熵、极化指数均可以反映倒伏现象;
(3)倒伏发生伴随着散射机制的明显变化,因此可以通过极化特征表征。[89,90] 表 1 Summary of studies using ground-based radar scatterometers
Research
teamDescription of scatterometer
parametersType (object) Conclusion Reference Parameter Description Ulaby Team, University of Kansas MAPS Dual polarization (HH+VV); the inci-dence angle varies from 0° to 70°; the frequency ranges from 4 to
8 GHzSoil moisture The sensitivity of backscatter to soil moisture: HH > VV; the sensitivity of backscatter to soil water is significantly affected by the soil surface roughness, which can be characterized by the change in frequency and incidence angle. Therefore, soil moisture inversion is obviously affected by frequency and incidence angle. When the frequency ranges from 4 to 8 GHz, the sensitivity of backscatter to soil water is significantly affected by the frequency and incidence angle. For instance, when the incidence angle varies between 5° and 15°, the backscattering of HH polarization is hardly affected by the vegetation and only reflects the change of soil moisture. [16-18] Full polarization (HH+VV+HV+VH); the incidence angle varies from 0° to 80°; the frequency is bet-ween 4 and 8 GHz Classification and mapping of crops (crops include corn, sorghum, soyb-ean and alfalfa) The polarization characteristics were sensitive to the change in crop structure; the ridge direction of farmland has an obvious influence on the polarization scattering characteristics, which is dependent on the type of crops; the sensitivity of the changes to crop structure: VV > HH; the changes in crop density and incidence angle affect the backscattering intensity of microwave at different frequencies; the combination of large incidence angle (30° to 65°) and high-frequency band would be the most effective way to distinguish different crop types. [18] MAS Bipolarization (HH+VV); the incidence angle varies from 7° to 15°; the frequency is between 2 and 8 GHz Soil moisture in bare soil-cove-red area Soil roughness affects the inversion of soil moisture in bare soil coverage area; the influence of soil roughness can be reduced by optimizing the system parameters of scatterometers. The recommended combination is a frequency of 4 GHz, an incidence angle that varies from 7° to 15°, and a polarization mode of HH or VV. This parameter is also applicable to soil moisture retrieval in vegetation coverage areas with frequencies ranging from
4 to 8 GHz. The highest correlation between backscatter and soil moisture is obtained at a frequency of 4.7 GHz and an incidence angle of 10°.[18,20] Tri-polarization (HH+VV+HV); the incid-ence angle varies from 0° to 80°; the frequency is between 2 and 8 GHz Soil moisture, surface roughn-ess, and soil st-ructure For the soil moisture in the bare soil-covered area, the conclusion was similar to Ref. [20], and the surface roughness effects are the lowest when the frequency is 5 GHz and the incidence angle ranges from 7° to 17°. The best soil moisture inversion with crop coverage was obtained at a frequency of 4.25 GHz, incidence angle of 10°, and polarization of HH, with r = 0.92; The estimation capability of soil moisture based on backscattering coefficient depends on the proportion of soil moisture to the field water contents. When the proportion is less than 50%, the estimation is not good, and when the proportion is between 50%–100%, the estimation performance is better. [21–23] Bipolarization (HH+VV); the incidence angle varies from 0° to 70°; the frequency is between 8 and 18 GHz Soil moisture and crop identi-fication (corn, sorghum, soyb-ean and alfalfa) In addition to the similar conclusion with Ref. [18], the best crop identification can be obtained by using the multifrequency data of VV; the influence of soil moisture on crop identification can be minimized when the incidence angle is between 30° and 65°, and better soil moisture inversion results can be obtained with the data combination of low frequency and small incidence angle. [19] ROVE, the Ne-therlands FM/CW X-(10 GHz); Q-band (35 GHz); the incidence angle varies from 15° to 80°; polarization: VV, HH, VH, HV Crop observa-tion; Soil mois-ture The backscattering coefficient of crops is obviously affected by polarization mode and observation angle. The influence of imaging geometry depends on crop types. For example, the influence of incidence angle on sugar beet is not obvious, but the impact on potato reached –5 dB. In addition, when the coverage rate of crop canopy reached 80%, the variation of backscattering coefficient was saturated. X-band can be used for agriculture crop classification and identification. Multifrequency data joint observation can improve the accuracy of crop canopy biomass, canopy water content, coverage, and crop height estimation. Increasing the observation incidence angle can improve the estimation accuracy of canopy water content. [24-28] CCRS,Canada FM/CW L-/C-/Ku (1.5/5.2/12.8 GHz); full polarization; incid-ence angle: 0°–85° Crop identific-ation and class-ification; soil moisture, crop canopy mois-ture, crop residue Through the analysis of variance coefficient, we can obtain the best crop recognition with Ku-band, HV polarization, incidence angle range of 30°–60°, and crop growth during 29–30 weeks. A high correlation exists between backscatter and daily canopy water content when the crops grow in the rapid growth stage. The correlation between backscatter and daily soil moisture change is high when the crops wither. HV is sensitive to crop residual change and is not affected by observation direction or ridge direction. [29-33] China Ground based microwave scatterometer (FM/CW) C-; HH and VV Soil moisture Soil roughness The ridge direction enhances the backscattering coefficient with the polarization channel parallel to it, and the measured roughness by SAR is different from that obtained by optical data. [34,35] Microwave scatterometer (FM/CW) X-(9.375 GHz), Incidence angle: 0°–48°; step in-terval: 6°; full polarization Soil moisture X-band with HH polarization has the highest sensitivity to bare soil water content at an incidence angle of 6°. X-band is worse than C-band for vegetation coverage soil moisture retrieval. When the water content is constant, the backscattering coefficient decreases with the increase in the incidence angle, and the change rate decreases with the increase in roughness. With the increase in frequency, the incidence angle independent of roughness increases. For example, when the frequency is 1.1 GHz, the incidence angle is 7° and 10° at 7.5 GHz. [34,36,37] Others ComRAD Bipolarization, 1.4 GHz radiometer; full polarization (1.25 GHz) Vegetation Water Content (VWC) L-band and HV showed the best performance in VWC retrieval when HH, VV, MPDI, and RVI are used to retrieve VWC. [38-40] UF-LARS L-(1.25 GHz), full polarization; inci-dence angle: 40° Soil moisture, Crop growth The accuracy of soil moisture retrieval can be improved by decreasing the sampling time interval, and VV polarization backscattering is more sensitive to the vertical structure of crops. The linear relationship inversion results are uncertain in the inversion of soil moisture where the scattering mechanism is dominated by vegetation scattering, while the surface is smooth and the soil is dry. [41-42] 表 2 Major space-borne radar scatterometers and their basic information
Satellite Sensor Band Incidence angle Polarization Service time Nation Seasat SASS Ku 25°–55° HH, VV 1978.6–1978.10 US ERS-1 AMI C 18°–59° VV 1991.6–2000.3 ESA ERS-2 AMI C 18°–59° VV 1995.4– ESA ADEOS-1 NSCAT Ku 18°–63° HH, VV 1996.8–1997.6 US QuickSCAT SeaWinds Ku 46°, 54° HH, VV 1999.7– US ADEOS-2 NSCAT Ku 46°, 54° HH, VV 2002.12–2003.8 US SZ-4 CN/SCAT Ku 37° HH, VV 2002.12– China MetOp-1 ASCAT C 25°–65° VV 2006.10– ESA OceanSat-1 OSCAT-1 Ku 50°, 57° HH, VV 2009– India HY-2A HY-2A Ku HH, VV 2010.8– China OceanSat-2 OSCAT-2 Ku 50°, 57° HH, VV 2016– India SMAP L- 2015.1–2015.7 US 表 3 Summary of studies using polarimetric characterization
Application Description of SAR parameters Result Reference Crop classifica-tion and identifica-tion Pauli decomposition parameter; Stokes vector feature; Decomposition param-eter based on eigenvalueand eigenve-ctor; Freeman-Durden, Yamaguchi decomposition parameter; Span-Pauli decomposition parameter, $H {\text{-}} \overline A {\text{-}} \alpha $ de-composition parameter; Cloude decom-position parameter 1. Adding polarimetric features can effectively improve the classification accuracy.
2. For different crops, the difference is obvious.
3. The accuracy of crop classification can be effectively improved by adding temporal features of polarimetric features.
4. The classification accuracy of adding polarimetric decomposition feature is higher than that when only simple linear polarimetric combination is used.
5. The classification results using compact polarimetric features can achieve the same accuracy as the use of full polarimetric features.[3,65,66] Inversion of farm-land parameters (soil moisture/gro-und roughness) 1. Parameters such as depolarization ratio, co-polarimetric correlation coeff-icient, coherence parameter, scattering entropy, and scattering angle were introduced to analyze the relationship between soil moisture and backsca-ttering coefficient; 2. The parameters of polarimetric decomposition mainly include Freeman-Durden and eigen-value decomposition 1. Using the multipolarimetric feature can better reduce the uncertainty of soil moisture inversion than using the single polarimetric feature and improve the inversion accuracy.
2. The inversion accuracy can be improved by using the parameters of polarimetric decomposition instead of backscattering coefficient.
3. With the introduction of polarimetric parameters, the inversion results are affected by crop phenology and crop types.[3,67] Inversion of crop growth parame-ters Polarimetric synthesis and polarimetric decomposition parameters; parameters were developed based on polarimetric synthesis and decomposition param-eters, such as radar vegetation index and reference height parameters. 1. Growth parameters include LAI, biomass, and crop height.
2. X- and C-bands are sensitive to the change in LAI.
3. Inversion results are affected by crop phenological period and crop type.
4. More accurate inversion of crop growth parameters can be obtained by using multipolarization synthesis and decomposition parameters (about 30 parameters have been used for crop growth parameters inversion at present)[80-83] Division of crop phenological period Cloude-Pottier decomposition param-eters, polarimetric ratio, polarimetric difference ratio, polarimetric synthesis parameter (polarization degree), CP backscattering coefficient, and polari-metric decomposition parameter, Stokes parameter 1. Time series data are mainly used to retrieve or monitor the phenological period.
2. The methods include classification and dynamic tracking.
3. The data used for monitoring include X - and C-band.[9,84-88] Crop disaster monitoring Polarimetric index (HH/VV, HH/HV surface scattering, Span, double scattering/Span) 1. Different polarizations have an obvious effect on lodging.
2. Both polarimetric entropy and polarimetric index can reflect the lodging.
3. The occurrence of lodging is accompanied by obvious changes in polarimetric scattering mechanism, so it can be characterized by polarimetric characterization.[89,90] -
[1] FAWWAZ T U, R K M, ADRIAN K F and FENG J, et al. 侯世昌, 马锡冠等, 译. 微波遥感[M]. 科学出版社, 1988, 1–10.FAWWAZ T U, R K M, ADRIAN K F, et al. HOU Shichang, MA Xiguan, et al. Translation. Microwave Remote Sensing[M]. Science Press, 1988, 1–10. [2] 王迪, 周清波, 陈仲新, 等. 基于合成孔径雷达的农作物识别研究进展[J]. 农业工程学报, 2014, 30(16): 203–212. doi: 10.3969/j.issn.1002-6819.2014.16.027WANG Di, ZHOU Qingbo, CHEN Zhongxin, et al. Research advances on crop identification using synthetic aperture radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(16): 203–212. doi: 10.3969/j.issn.1002-6819.2014.16.027 [3] LIU Chang’an, CHEN Zhongxin, SHAO Yun, et al. Research advances of SAR remote sensing for agriculture applications: A review[J]. Journal of Integrative Agriculture, 2019, 18(3): 506–525. doi: 10.1016/S2095-3119(18)62016-7 [4] 施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: 地球科学, 2012, 55(7): 1052–1078. doi: 10.1007/s11430-012-4444-xSHI Jiancheng, DU Yang, DU Jinyang, et al. Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Sciences, 2012, 55(7): 1052–1078. doi: 10.1007/s11430-012-4444-x [5] 张亚红, 吴娇娇, 胥喆, 等. 合成孔径雷达在农作物长势监测中的应用[J]. 安徽农业科学, 2016, 44(27): 220–222, 244. doi: 10.13989/j.cnki.0517-6611.2016.27.074ZHANG Yahong, WU Jiaojiao, XU Zhe, et al. Application of synthetic aperture radar in crop growth monitoring[J]. Journal of Anhui Agricultural Sciences, 2016, 44(27): 220–222, 244. doi: 10.13989/j.cnki.0517-6611.2016.27.074 [6] 李正国, 杨鹏, 周清波, 等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报, 2008, 29(11): 6216–6226. doi: 10.3321/j.issn:1000-0933.2009.11.057LI Zhengguo, YANG Peng, ZHOU Qingbo, et al. Research on spatiotemporal pattern of crop phenological characteristics and cropping system in North China based on NDVI time series data[J]. Acta Ecologica Sinica, 2008, 29(11): 6216–6226. doi: 10.3321/j.issn:1000-0933.2009.11.057 [7] 李正国, 唐华俊, 杨鹏, 等. 植被物候特征的遥感提取与农业应用综述[J]. 中国农业资源与区划, 2012, 33(5): 20–28. doi: 10.7621/cjarrp.1005-9121.20120504LI Zhengguo, TANG Huajun, YANG Peng, et al. Progress in remote sensing of vegetation phenology and its application in agriculture[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(5): 20–28. doi: 10.7621/cjarrp.1005-9121.20120504 [8] 卢必慧, 于堃. 遥感信息与作物生长模型同化应用的研究进展[J]. 江苏农业科学, 2018, 46(10): 9–13. doi: 10.15889/j.issn.1002-1302.2018.10.003LU Bihui and YU Kun. Research progress on assimilation of remote sensing information and crop growth model[J]. Jiangsu Agricultural Sciences, 2018, 46(10): 9–13. doi: 10.15889/j.issn.1002-1302.2018.10.003 [9] 李平湘, 赵伶俐, 任烨仙. 合成孔径雷达在农业监测中的应用和展望[J]. 地理空间信息, 2017, 15(3): 1–4. doi: 10.3969/j.issn.1672-4623.2017.03.001LI Pingxiang, ZHAO Lingli, and REN Yexian. Outlook and application of the synthetic aperture radar in agriculture monitoring[J]. Geospatial Information, 2017, 15(3): 1–4. doi: 10.3969/j.issn.1672-4623.2017.03.001 [10] 刘健, 郭交, 韩文霆. 基于合成孔径雷达的土壤水分反演研究进展[J]. 三峡生态环境监测, 2020, in press. doi: http://kns.cnki.net/kcms/detail/50.1214.X.20200312.1142.002.htmlLIU jian, GUO jiao, and HAN wenting. Advance in research on soil moisture retrieval using synthetic aperture radar[J]. Ecology and Environmental Monitoring of Three Gorges, 2020, in press. doi: http://kns.cnki.net/kcms/detail/50.1214.X.20200312.1142.002.html [11] MCNAIRN H and SHANG Jiali. A review of multitemporal Synthetic Aperture Radar (SAR) for crop monitoring[J]. Multitemporal Remote Sensing, 2018, 20: 317–340. doi: 10.1007/978-3-319-47037-5_15. [12] 黄健熙, 黄海, 马鸿元, 等. 遥感与作物生长模型数据同化应用综述[J]. 农业工程学报, 2018, 34(21): 144–156. doi: 10.11975/j.issn.1002-6819.2018.21.018HUANG Jianxi, HUANG Hai, MA Hongyuan, et al. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 144–156. doi: 10.11975/j.issn.1002-6819.2018.21.018 [13] HUANG Jianxi, GÓMEZ-DANS J L, HUANG Hai, et al. Assimilation of remote sensing into crop growth models: Current status and perspectives[J]. Agricultural and Forest Meteorology, 2019, 276/277: 107609. doi: 10.1016/j.agrformet.2019.06.008 [14] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047 [15] WOODHOUSE I H. Introduction to Microwave Remote Sensing[M], New York, CRC Press Taylor & Francis Group, 2006, 221–257 . doi: 10.1111/j.1477-9730.2009.00531_1.x [16] ULABY F and MOORE R. Radar sensing of soil moisture[C]. 1973 Antennas and Propagation Society International Symposium, Boulder, USA, 1973: 362–365. doi: 10.1109/APS.1973.1147125. [17] ULABY F. Radar measurement of soil moisture content[J]. IEEE Transactions on Antennas and Propagation, 1974, 22(2): 257–265. doi: 10.1109/TAP.1974.1140761 [18] ULABY F. Radar response to vegetation[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(1): 36–45. doi: 10.1109/TAP.1975.1140999 [19] ULABY F, BUSH T, and BATLIVALA P P. Radar response to vegetation II: 8–18 GHz band[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(5): 608–618. doi: 10.1109/tap.1975.1141133 [20] ULABY F T and BATLIVALA P P. Optimum radar parameters for mapping soil moisture[J]. IEEE Transactions on Geoscience Electronics, 1976, 14(2): 81–93. doi: 10.1109/TGE.1976.294414 [21] ULABY F T, BATLIVALA P P, and DOBSON M C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil[J]. IEEE Transactions on Geoscience Electronics, 1978, 16(4): 286–295. doi: 10.1109/TGE.1978.294586 [22] ULABY F T, BRADLEY G A, and DOBSON M C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation-covered soil[J]. IEEE Transactions on Geoscience Electronics, 1979, 17(2): 33–40. doi: 10.1109/TGE.1979.294626 [23] ULABY F T, ASLAM A, and DOBSON M C. Effects of vegetation cover on the radar sensitivity to soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(4): 476–481. doi: 10.1109/TGRS.1982.350413 [24] DE LOOR G P, JURRIENS A A, and GRAVESTEIJN H. The radar backscatter from selected agricultural crops[J]. IEEE Transactions on Geoscience Electronics, 1974, 12(2): 70–77. doi: 10.1109/tge.1974.294337 [25] BOUMAN B A M and VAN KASTEREN H W J. Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. I. Sugar beet and potato; backscattering and crop growth[J]. Remote Sensing of Environment, 1990, 34(2): 93–105. doi: 10.1016/0034-4257(90)90101-q [26] BOUMAN B A M and VAN KASTEREN H W J. Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. II. Wheat, barley, and oats; the impact of canopy structure[J]. Remote Sensing of Environment, 1990, 34(2): 107–119. doi: 10.1016/0034-4257(90)90102-R [27] BOUMAN B A M. Crop parameter estimation from ground-based X-band (3-cm wave) radar backscattering data[J]. Remote Sensing of Environment, 1991, 37(3): 193–205. doi: 10.1016/0034-4257(91)90081-g [28] INOUE Y, KUROSU T, MAENO H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002, 81(2/3): 194–204. doi: 10.1016/s0034-4257(01)00343-1 [29] BRISCO B, BROWN R J, GAIRNS J G, et al. Temporal ground-based scatterometer observations of crops in Western Canada[J]. Canadian Journal of Remote Sensing, 1992, 18(1): 14–21. doi: 10.1080/07038992.1992.10855138 [30] BRISCO B, BROWN R J, KOEHLER J A, et al. The diurnal pattern of microwave backscattering by wheat[J]. Remote Sensing of Environment, 1990, 34(1): 37–47. doi: 10.1016/0034-4257(90)90082-w [31] MCNAIRN H, DUGUAY C, BOISVERT J, et al. Defining the sensitivity of multi-frequency and multi-polarized radar backscatter to post-harvest crop residue[J]. Canadian Journal of Remote Sensing, 2001, 27(3): 247–263. doi: 10.1080/07038992.2001.10854941 [32] SMITH A M and MAJOR D J. Radar backscatter and crop residues[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 243–247. doi: 10.1080/07038992.1996.10855179 [33] BRISCO B, BROWN R J, SNIDER B, et al. Tillage effects on the radar backscattering coefficient of grain stubble fields[J]. International Journal of Remote Sensing, 1991, 12(11): 2283–2298. doi: 10.1080/01431169108955258 [34] SONG Dongsheng, ZHAO Kai, and GUAN Zhi. Advances in research on soil moisture by microwave remote sensing in China[J]. Chinese Geographical Science, 2007, 17(2): 186–191. doi: 10.1007/s11769-007-0186-7 [35] 王丽巍, 吴季, 张玮, 等. FM-CW制式陆基微波散射计与IEM模型联合反演地表土壤湿度研究[J]. 电子学报, 2002, 30(3): 404–406. doi: 10.3321/j.issn:0372-2112.2002.03.025WANG Liwei, WU Ji, ZHANG Wei, et al. Study on soil moisture with ground-based scatterometer and IEM model[J]. Acta Electronica Sinica, 2002, 30(3): 404–406. doi: 10.3321/j.issn:0372-2112.2002.03.025 [36] 赵昌龄, 郝卫星, 李生平, 等. 微波遥感裸露土壤和植被覆盖土壤含水量的研究[J]. 土壤学报, 1992, 29(3): 310–317. doi: 10.3321/j.issn:0564-3929.1992.03.004ZHAO Changling, HAO Weixing, LI Shengping, et al. Study on microwave remote sensing for bare and vegetation-covered soil moisture[J]. Acta Pedologica Sinica, 1992, 29(3): 310–317. doi: 10.3321/j.issn:0564-3929.1992.03.004 [37] O'NEILL P E, LANG R H, KURUM M, et al. Multi-sensor microwave soil moisture remote sensing: NASA’s Combined Radar/Radiometer (ComRAD) System[C]. 2006 IEEE MicroRad, Puerto Rico, USA, 2006: 50–54. doi: 10.1109/MICRAD.2006.1677061. [38] JACKSON T J, COSH M, BINDLISH R, et al. Soil Moisture Active Passive (SMAP) Calibration and validation plan and current activities[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 25–30. [39] SRIVASTAVA P K, O'NEILL P, COSH M, et al. Evaluation of radar vegetation indices for vegetation water content estimation using data from a ground-based SMAP simulator[C]. IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1296–1299. doi: 10.1109/IGARSS.2015.7326012. [40] NAGARAJAN K, LIU P W, DEROO R, et al. Automated L-band radar system for sensing soil moisture at high temporal resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 504–508. doi: 10.1109/LGRS.2013.2270453 [41] LIU Pangwei, JUDGE J, DEROO R D, et al. Dominant backscattering mechanisms at L-band during dynamic soil moisture conditions for sandy soils[J]. Remote Sensing of Environment, 2016, 178: 104–112. doi: 10.1016/j.rse.2016.02.062 [42] KRUL L. Some results of microwave remote sensing research in the Netherlands with a view to land applications in the 1990s[J]. International Journal of Remote Sensing, 1988, 9(10/11): 1553–1563. doi: 10.1080/01431168808954960 [43] SNOEIJ P and SWART P J F. The DUT airborne scatterometer[J]. International Journal of Remote Sensing, 1987, 8(11): 1709–1716. doi: 10.1080/01431168708954810 [44] BERNARD R, VIDAL-MADJAR D, BAUDIN F, et al. Data processing and calibration for an airborne scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(5): 709–716. doi: 10.1109/TGRS.1986.289618 [45] BOUMAN B A M and HOEKMAN D H. Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands[J]. International Journal of Remote Sensing, 1993, 14(8): 1595–1614. doi: 10.1080/01431169308953988 [46] FERRAZZOLI P, PALOSCIA S, PAMPALONI P, et al. Sensitivity of microwave measurements to vegetation biomass and soil moisture content: A case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 750–756. doi: 10.1109/36.158869 [47] BENALLEGUE M, NORMAND M, GALLE S, et al. Soil moisture assessment at a basin scale using active microwave remote sensing: The Agriscatt '88 Airborne Campaign on the Orgeval watershed[J]. International Journal of Remote Sensing, 1994, 15(3): 645–656. doi: 10.1080/01431169408954102 [48] 张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势[J]. 遥感信息, 2009, (6): 87–94. doi: 10.3969/j.issn.1000-3177.2009.06.019ZHANG Yi, JIANG Xingwei, LIN Mingsen, et al. The present research status and development trend of spacebonre microwave scatterometer[J]. Remote Sensing Information, 2009(6): 87–94. doi: 10.3969/j.issn.1000-3177.2009.06.019 [49] KEYDEL W. Microwave sensors for remote sensing of land and sea surfaces[J]. Geojournal, 1991, 24(1): 7–25. doi: 10.1007/BF00213053 [50] LONG D. Radar, Scatterometers[M]. NJOKU E G. Encyclopedia of Remote Sensing. New York, USA: Springer, 2014: 529. doi: 10.1007/978-0-387-36699-9_136. [51] 彭海龙, 穆博, 林明森, 等. 基于亚马逊热带雨林的HY-2卫星微波散射计在轨测量性能分析[J]. 中国工程科学, 2014, 16(6): 33–38. doi: 10.3969/j.issn.1009-1742.2014.06.005PENG Hailong, MU Bo, LIN Mingsen, et al. Performance analysis of the HY-2 satellite microwave scatterometer measurements based on tropical rainforests[J]. Engineering Science, 2014, 16(6): 33–38. doi: 10.3969/j.issn.1009-1742.2014.06.005 [52] WOODHOUSE I H and HOEKMAN D H. Determining land-surface parameters from the ERS wind scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 126–140. doi: 10.1109/36.823907 [53] WOODHOUSE I H and HOEKMAN D H. A model-based determination of soil moisture trends in Spain with the ERS-scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1783–1793. doi: 10.1109/36.851762 [54] FRISON P L, MOUGIN E, JARLAN L, et al. Comparison of ERS wind-scatterometer and SSM/I data for Sahelian vegetation monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1794–1803. doi: 10.1109/36.851763 [55] FROLKING S, MILLIMAN T, MCDONALD K, et al. Evaluation of the SeaWinds scatterometer for regional monitoring of vegetation phenology[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D17): D17302. doi: 10.1029/2005jd006588 [56] LU Linlin, GUO Huadong, WANG Cuizhen, et al. Assessment of the SeaWinds scatterometer for vegetation phenology monitoring across China[J]. International Journal of Remote Sensing, 2013, 34(15): 5551–5568. doi: 10.1080/01431161.2013.794986 [57] WEN Jun and SU Zhongbo. The estimation of soil moisture from ERS wind scatterometer data over the Tibetan plateau[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2003, 28(1/3): 53–61. doi: 10.1016/S1474-7065(03)00007-X [58] WAGNER W, SCIPAL K, PATHE C, et al. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D19): 4611. doi: 10.1029/2003jd003663 [59] BARTALIS Z, WAGNER W, NAEIMI V, et al. Initial soil moisture retrievals from the METOP-A Advanced SCATterometer (ASCAT)[J]. Geophysical Research Letters, 2017, 34(20): L20401. doi: 10.1029/2007gl031088 [60] DORIGO W A, GRUBER A, DE JEU R A M, et al. Evaluation of the ESA CCI soil moisture product using ground-based observations[J]. Remote Sensing of Environment, 2015, 162: 380–395. doi: 10.1016/j.rse.2014.07.023 [61] KIM S B, TSANG L, JOHNSON J T, et al. Soil moisture retrieval using time-series radar observations over bare surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1853–1863. doi: 10.1109/TGRS.2011.2169454 [62] KIM S B, MOGHADDAM M, TSANG L, et al. Models of L-band radar backscattering coefficients over global terrain for soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1381–1396. doi: 10.1109/TGRS.2013.2250980 [63] NAEIMI V, SCIPAL K, BARTALIS Z, et al. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1999–2013. doi: 10.1109/tgrs.2008.2011617 [64] WAGNER W, LEMOINE G, and ROTT H. A method for estimating soil moisture from ERS scatterometer and soil data[J]. Remote Sensing of Environment, 1999, 70(2): 191–207. doi: 10.1016/S0034-4257(99)00036-X [65] 孙政, 周清波, 杨鹏, 等. 基于星载极化SAR数据的农作物分类识别进展评述[J]. 中国农业资源与区划, 2019, 40(11): 63–71.SUN Zheng, ZHOU Qingbo, YANG Peng, et al. Review of crop classification and recognition based on spaceborne polarimetric SAR data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(11): 63–71. [66] 徐昆鹏. 基于极化散射特征与SVM的极化SAR影像分类方法研究[D]. [硕士论文], 内蒙古农业大学, 2018: 40–44.XU Kunpeng. Study on polarimetric SAR image classification method based on polarization scattering characteristics and SVM[D]. [Master dissertation], Inner Mongolia Agricultural University, 2018: 40–44. [67] 李俐, 王荻, 王鹏新, 等. 合成孔径雷达土壤水分反演研究进展[J]. 资源科学, 2015, 37(10): 1929–1940.LI Li, WANG Di, WANG Pengxin, et al. Progress on monitoring soil moisture using SAR data[J]. Resources Science, 2015, 37(10): 1929–1940. [68] ATTEMA E P W and ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357–364. doi: 10.1029/RS013i002p00357 [69] ULABY F T, MCDONALD K, SARABANDI K, et al. Michigan microwave canopy scattering models (MIMICS)[C]. International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century’, Edinburgh, UK, 1988: 1009. doi: 10.1109/IGARSS.1988.570506. [70] TOURE A, THOMSON K P B, EDWARDS G, et al. Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 47–61. doi: 10.1109/36.285188 [71] LIN Hui, CHEN Jinsong, PEI Zhiyuan, et al. Monitoring sugarcane growth using ENVISAT ASAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2572–2580. doi: 10.1109/TGRS.2009.2015769 [72] 李成钢. 冬小麦微波散射特性及参数反演研究[D]. [硕士论文], 电子科技大学, 2013: 47–51.LI Chenggang. Research on the inversion of parameters and microwave scattering characteristics of winter wheat[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013: 47–51. [73] 吴学睿, 李颖, 李传龙. 基于Bi-Mimics模型的GNSS-R农作物生物量监测理论研究[J]. 遥感技术与应用, 2012, 27(2): 220–230. doi: 10.11873/j.issn.1004-0323.2012.2.220WU Xuerui, LI Ying, and LI Chuanlong. Research on crop biomass monitoring using GNSS-R technique based on bi-mimics model[J]. Remote Sensing Technology and Application, 2012, 27(2): 220–230. doi: 10.11873/j.issn.1004-0323.2012.2.220 [74] 贾明权. 水稻微波散射特性研究及参数反演[D]. [博士论文], 电子科技大学, 2013: 95–114.JIA Mingquan. Research on rice microwave scattering mechanism and parameter inversion[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2013: 95–114. [75] 陶亮亮, 李京, 蒋金豹, 等. 利用RADARSAT-2雷达数据与改进的水云模型反演冬小麦叶面积指数[J]. 麦类作物学报, 2016, 36(2): 236–242. doi: 10.7606/j.issn.1009-1041.2016.02.15TAO Liangliang, LI Jing, JIANG Jinbao, et al. Leaf area index inversion of winter wheat using Radarsat-2 data and modified water-cloud model[J]. Journal of Triticeae Crops, 2016, 36(2): 236–242. doi: 10.7606/j.issn.1009-1041.2016.02.15 [76] 陈磊, 范伟, 陈娟, 等. 基于星载SAR的冬小麦估产模型比较分析[J]. 中国农学通报, 2015, 31(10): 256–260. doi: 10.11924/j.issn.1000-6850.casb14110161CHEN Lei, FAN Wei, CHEN Juan, et al. Comparative analysis of winter wheat yield estimation model based on SAR[J]. Chinese Agricultural Science Bulletin, 2015, 31(10): 256–260. doi: 10.11924/j.issn.1000-6850.casb14110161 [77] 范伟, 陈磊, 荀尚培, 等. 基于双极化双时相RADARSAT-2的冬小麦估产模型研究[J]. 中国农学通报, 2014, 30(20): 284–289. doi: 10.11924/j.issn.1000-6850.2013-2242FAN Wei, CHEN Lei, XUN Shangpei, et al. Model for estimating winter wheat yield based on RADARSAT-2 of double-polarization and double-time phase[J]. Chinese Agricultural Science Bulletin, 2014, 30(20): 284–289. doi: 10.11924/j.issn.1000-6850.2013-2242 [78] 谭正. 基于SAR数据和作物生长模型同化的水稻长势监测与估产研究[D]. [硕士论文], 中国地质大学(北京), 2012: 19–25.TAN Zheng. Study on rice growth monitoring and yield prediction based on assimilation of SAR data and crop growth model[D]. [Master dissertation], China University of Geosciences, 2012: 19–25. [79] RINALDI M, SATALINO G, MATTIA F, et al. Assimilation of COSMO-SkyMed-derived LAI maps into the AQUATER crop growth simulation model. Capitanata (Southern Italy) case study[J]. European Journal of Remote Sensing, 2013, 46(1): 891–908. doi: 10.5721/EuJRS20134653 [80] YANG Hao, YANG Guijun, et al. In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery[J]. Precision Agriculture, 2019, 20: 630–648. doi: 10.1007/s11119-018-9587-0 [81] MCNAIRN H and BRISCO B, et al. The Application of C-band Polarimetric SAR for Agriculture: A Review[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 525–542. doi: 10.1109/JSTARS.2014.2322311 [82] ZHANG W, CHEN E, LI Z, et al. Using compact polarimetric parameters for rape (Brassica napus L.)LAI inversion[C]. The IEEE International Geoscience & Remote Sensing Symposium, Texas, USA, 2017: 5846–5849. doi: 10.1109/IGARSS.2017.8128338. [83] ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Rape (Brassica napus L.) growth monitoring and mapping based on radarsat-2 time-series data[J]. Remote Sensing, 2018, 10(2): 206. doi: 10.3390/rs10020206 [84] LOPEZ-SANCHEZ J M, CLOUDE S R, and BALLESTER-BERMAN J D. Rice phenology monitoring by means of SAR polarimetry at X-Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2695–2709. doi: 10.1109/TGRS.2011.2176740 [85] LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, BALLESTER-BERMAN J D, et al. Polarimetric response of rice fields at C-Band: Analysis and phenology retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2977–2993. doi: 10.1109/TGRS.2013.2268319 [86] WANG Hongquan, MAGAGI R, GOÏTA K, et al. Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm[J]. Remote Sensing of Environment, 2019, 231: 111234. doi: 10.1016/j.rse.2019.111234 [87] CANISIUS F, SHANG Jiali, LIU Jiangui, et al. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data[J]. Remote Sensing of Environment, 2018, 210: 508–518. doi: 10.1016/j.rse.2017.07.031 [88] MCNAIRN H, JIAO Xianfeng, PACHECO A, et al. Estimating canola phenology using synthetic aperture radar[J]. Remote Sensing of Environment, 2018, 219: 196–205. doi: 10.1016/j.rse.2018.10.012 [89] YANG Hao, CHEN Erxue, LI Zengyuan, et al. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 157–166. doi: 10.1016/j.jag.2014.08.010 [90] 杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. [博士论文], 中国林业科学研究院, 2015: 45–58.YANG Hao. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. [Ph. D. dissertation], Chinese Academy of Forestry, 2015: 45–58. [91] MCNAIRN H, VAN DER SANDEN J J, BROWN R J, et al. The potential of RADARSAT-2 for crop mapping and assessing crop condition[C]. The 2nd International Conference on Geospatial Information in Agriculture and Forestry, Florida, USA, 2000: 81–88. doi: 10.4095/219589. [92] 东朝霞, 王迪, 周清波, 等. 基于SAR遥感的北方旱地秋收作物识别研究[J]. 中国农业资源与区划, 2016, 37(8): 27–36. doi: 10.7621/cjarrp.1005-9121.20160804DONG Zhaoxia, WANG Di, ZHOU Qingbo, et al. Dryland crop identification based on synthetic aperture radar in the North China Plain[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 27–36. doi: 10.7621/cjarrp.1005-9121.20160804 [93] 化国强, 王晶晶, 黄晓军, 等. 基于全极化SAR数据散射机理的农作物分类[J]. 江苏农业学报, 2011, 27(5): 978–982. doi: 10.3969/j.issn.1000-4440.2011.05.011HUA Guoqiang, WANG Jingjing, HUANG Xiaojun, et al. Crop classification based on scattering model using full-polarization SAR data[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(5): 978–982. doi: 10.3969/j.issn.1000-4440.2011.05.011 [94] 李坤, 邵芸, 张风丽. 基于RadarSat-2全极化数据的水稻识别[J]. 遥感技术与应用, 2012, 27(1): 86–93. doi: 10.11873/j.issn.1004-0323.2012.1.86LI Kun, SHAO Yun, and ZHANG Fengli. Extraction of rice based on quad-polarization RadarSat-2 Data[J]. Remote Sensing Technology and Application, 2012, 27(1): 86–93. doi: 10.11873/j.issn.1004-0323.2012.1.86 [95] MCNAIRN H, SHANG Jiali, JIAO Xianfeng, et al. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 3981–3992. doi: 10.1109/TGRS.2009.2026052 [96] DUBOIS P C, VAN ZYL J, and ENGMAN T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915–926. doi: 10.1109/36.406677 [97] SHI Jiancheng, WANG J R, HSU A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254–1266. doi: 10.1109/36.628792 [98] SHI Jiancheng and CHEN K S. Estimation of bare surface soil moisture with L-band multi-polarization radar measurements[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005: 2194. doi: 10.1109/IGARSS.2005.1526454. [99] HAJNSEK I, PAPPATHANASSIOU K P, REIGBER A, et al. Soil-moisture estimation using polarimetric SAR data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 2440–2442. doi: 10.1109/IGARSS.1999.771536. [100] PIERDICCA N, CASTRACANE P, and PULVIRENTI L. Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data[J]. Sensors, 2008, 8(12): 8181–8200. doi: 10.3390/s8128181 [101] MATTIA F, LE TOAN T, SOUYRIS J C, et al. The effect of surface roughness on multifrequency polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 954–966. doi: 10.1109/36.602537 [102] CLOUDE S R. Eigenvalue parameters for surface roughness studies[C]. SPIE 3754, Polarization: Measurement, Analysis, and Remote Sensing II, Denver, USA, 1999. doi: 10.1117/12.366317. [103] HAJNSEK I, POTTIER E, and CLOUDE S R. Inversion of surface parameters from polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 727–744. doi: 10.1109/TGRS.2003.810702 [104] MARZAHN P and LUDWIG R. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling[J]. Hydrology and Earth System Sciences, 2009, 13(3): 381–394. doi: 10.5194/hess-13-381-2009 [105] ZRIBI M, GORRAB A, and BAGHDADI N. A new soil roughness parameter for the modelling of radar backscattering over bare soil[J]. Remote Sensing of Environment, 2014, 152: 62–73. doi: 10.1016/j.rse.2014.05.009 [106] JIAO Xianfeng, MCNAIRN H, SHANG Jiali, et al. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index[J]. Canadian Journal of Remote Sensing, 2011, 37(1): 69–81. doi: 10.5589/m11-023 [107] MCNAIRN H, SHANG J, JIAO X, et al. Establishing crop productivity using RADARSAT-2[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B8: 283–287. doi: 10.5194/isprsarchives-XXXIX-B8-283-2012 [108] WISEMAN G, MCNAIRN H, HOMAYOUNI S, et al. RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4461–4471. doi: 10.1109/JSTARS.2014.2322311. [109] YANG Zhi, LI Kun, LIU Long, et al. Rice growth monitoring using simulated compact polarimetric C band SAR[J]. Radio Science, 2014, 49(12): 1300–1315. doi: 10.1002/2014RS005498 [110] YANG Zhi, LI Kun, SAHO Yun, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote Sensing, 2016, 8(10): 878. doi: 10.3390/rs8100878 [111] ZHANG Wangfei, LI Zengyuan, CHEN Erxue, et al. Compact polarimetric response of rape (Brassica napus L.) at C-Band: Analysis and growth parameters inversion[J]. Remote Sensing, 2017, 9(6): 591. doi: 10.3390/rs9060591 [112] 杨知. 基于极化SAR的水稻物候期监测与参数反演研究[D]. [博士论文]. 中国科学院遥感与数字地球研究所, 2017: 83–106.YANG Zhi. Rice phenology estimation and parameter retrieval based on polarimetric Synthetic Aperture Radar (SAR)[D]. [Ph. D. dissertation], Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2017: 83–106. [113] HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote Sensing of Environment, 2015, 170: 77–89. doi: 10.1016/j.rse.2015.09.002 [114] VICENTE-GUIJALBA F, MARTINEZ-MARIN T, and LOPEZ-SANCHEZ J M. Crop phenology estimation using a multitemporal model and a kalman filtering strategy[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1081–1085. doi: 10.1109/LGRS.2013.2286214 [115] DE BERNARDIS C G, VICENTE-GUIJALBA F, MARTINEZ-MARIN T, et al. Estimation of key dates and stages in rice crops using dual-polarization SAR time series and a particle filtering approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1008–1018. doi: 10.1109/JSTARS.2014.2372898 [116] 张王菲, 姬永杰. 极化与干涉SAR植被参数反演[M]. 北京: 中国林业出版社, 2019: 4–6.ZHANG Wangfei and JI Yongjie. Vegetation Paramter Inversion using Polarimetric and Interferometric SAR Technique[M]. Beijing: China Forestry Publishing House, 2019: 4–6. [117] 张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983–997. doi: 10.11873/j.issn.1004-0323.2017.6.0983ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sensing Technology and Application, 2017, 32(6): 983–997. doi: 10.11873/j.issn.1004-0323.2017.6.0983 [118] ENGDAHL M E, BORGEAUD M, and RAST M. The use of ERS-1/2 Tandem interferometric coherence in the estimation of agricultural crop heights[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1799–1806. doi: 10.1109/36.942558 [119] TREUHAFT R N and SIQUEIRA P R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar[J]. Radio Science, 2000, 35(1): 141–177. doi: 10.1029/1999rs900108 [120] 胡楚锋, 周洲, 李南京, 等. 基于有向体模型的植被参数反演及室内宽带实验研究[J]. 电子与信息学报, 2012, 34(2): 255–260. doi: 10.3724/SP.J.1146.2011.00553HU Chufeng, ZHOU Zhou, LI Nanjing, et al. Investigation on vegetation parameters invesion algorithm based on oriented volume model and indoor wide-band measurements[J]. Journal of Electronics&Information Technology, 2012, 34(2): 255–260. doi: 10.3724/SP.J.1146.2011.00553 [121] LOPEZ-SANCHEZ J M, BALLESTER-BERMAN J D, and MARQUEZ-MORENO Y. Model limitations and parameter-estimation methods for agricultural applications of polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3481–3493. doi: 10.1109/TGRS.2007.900690 [122] ERTEN E, ROSSI C, and YUZUGULLU O. Polarization impact in TanDEM-X data over vertical-oriented vegetation: The paddy-rice case study[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1501–1505. doi: 10.1109/LGRS.2015.2410339 [123] ROSSI C and ERTEN E. Paddy-rice monitoring using TanDEM-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 900–910. doi: 10.1109/TGRS.2014.2330377 [124] LEE S K, YOON S Y, and WON J S. Vegetation height estimate in rice fields using single polarization TanDEM-X science phase data[J]. Remote Sensing, 2018, 10(11): 1702. doi: 10.3390/rs10111702 [125] 国贤玉, 李坤, 邵芸, 等. 基于多时相TanDEM-X极化干涉SAR数据的水稻株高反演[J]. 光谱学与光谱分析, 2020, 40(3): 878–884.GUO xianyu, LI Kun, SHAO Yun, et al. Inversion of rice height using multitemporal TanDEM-X polarimetric interferometry SAR data[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 878–884. [126] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873 [127] 林珲, 马培峰, 陈旻, 等. SAR层析成像的基本原理、关键技术和应用领域[J]. 测绘地理信息, 2015, 40(3): 1–5. doi: 10.14188/j.2095-6045.2015.03.001LIN Hui, MA Peifeng, CHEN Min, et al. Basic principles, key techniques and applications of tomographic SAR imaging[J]. Journal of Geomatics, 2015, 40(3): 1–5. doi: 10.14188/j.2095-6045.2015.03.001 [128] 张红, 江凯, 王超, 等. SAR层析技术的研究与应用[J]. 遥感技术与应用, 2010, 25(2): 282–287. doi: 10.11873/j.issn.1004-0323.2010.2.282ZHANG Hong, JIANG Kai, WANG Chao, et al. The current status of SAR tomography[J]. Remote Sensing Technology and Application, 2010, 25(2): 282–287. doi: 10.11873/j.issn.1004-0323.2010.2.282 [129] CLOUDE S R. Polarization coherence tomography[J]. Radio Science, 2006, 41(4): RS4017. doi: 10.1029/2005RS003436 [130] 李新武, 郭华东, 彭星, 等. SAR对地观测技术及应用新进展[J]. 南京信息工程大学学报: 自然科学版, 2020, 12(2): 170–180. doi: 10.13878/j.cnki.jnuist.2020.02.004LI Xinwu, GUO Huadong, PENG Xing, et al. New advances of SAR and its application in earth observation[J]. Journal of Nanjing University of Information Science&Technology:Natural Science Edition, 2020, 12(2): 170–180. doi: 10.13878/j.cnki.jnuist.2020.02.004 [131] 李文梅. 极化干涉SAR层析估测森林垂直结构参数方法研究[D]. [博士论文], 中国林业科学研究院, 2013: 3–12.LI Wenmei. Forest vertical structure parameters estimation using polarimetric interferometric tomography SAR[D]. [Ph. D. dissertation], Chinese Academy of Forestry, 2013: 3–12. [132] JOERG H, PARDINI M, HAJNSEK I, et al. Sensitivity of SAR tomography to the phenological cycle of agricultural crops at X-, C-, and L-band[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3014–3029. doi: 10.1109/JSTARS.2018.2845127 [133] BROWN S C M, QUEGAN S, MORRISON K, et al. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1602–1610. doi: 10.1109/tgrs.2003.814132 [134] LOPEZ-SANCHEZ J M, FORTUNY-GUASCH J, CLOUDE S R, et al. Indoor polarimetric radar measurements on vegetation samples At L, S, C and X band[J]. Journal of Electromagnetic Waves and Applications, 2000, 14(2): 205–231. doi: 10.1163/156939300X00734 [135] LOPEZ-SANCHEZ J M, BALLESTER-BERMAN J D, and FORTUNY-GUASCH J. Indoor wide-band polarimetric measurements on maize plants: A study of the differential extinction coefficient[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 758–767. doi: 10.1109/tgrs.2005.862522 [136] JOERG H, PARDINI M, HAJNSEK I, et al. On the separation of ground and volume scattering using multibaseline SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1570–1574. doi: 10.1109/LGRS.2017.2723980 [137] JOERG H, PARDINI M, HAJNSEK I, et al. 3-D scattering characterization of agricultural crops at C-Band using SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3976–3989. doi: 10.1109/TGRS.2018.2818440 [138] JOERG H, PARDINI M, HAJNSEK I, et al. First multi-frequency investigation of SAR tomography for vertical structure of agricultural crops[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014. [139] PICHIERRI M, HAJNSEK I, and PAPATHANASSIOU K P. A multibaseline Pol-InSAR inversion scheme for crop parameter estimation at different frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4952–4970. doi: 10.1109/TGRS.2016.2553739 [140] LOPEZ‐SANCHEZ J M, BALLESTER‐BERMAN J D. Potentials of polarimetric SAR interferometry for agriculture monitoring[J]. Radio Science, 2009, 44(2): RS2010. doi: 10.1029/2008RS004078
计量
- 文章访问数: 6282
- HTML全文浏览量: 2274
- PDF下载量: 620
- 被引次数: 0