星载SAR技术的发展趋势及应用浅析

邓云凯 赵凤军 王宇

邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015
引用本文: 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015
Deng Yun-kai, Zhao Feng-jun, Wang Yu. Brief Analysis on the Development and Application of Spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015
Citation: Deng Yun-kai, Zhao Feng-jun, Wang Yu. Brief Analysis on the Development and Application of Spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015

星载SAR技术的发展趋势及应用浅析

doi: 10.3724/SP.J.1300.2012.20015
详细信息
    作者简介:

    邓云凯(1962-),男,研究员,博士生导师,研究方向为星载合成孔径雷达系统设计。

    赵凤军(1963-),男,研究员,硕士生导师,研究方向为合成孔径雷达微波技术研究。

    王 宇(1980-),男,研究员,博士生导师,研究方向为双基SAR信号处理、双基干涉测量与FMCW SAR系统设计等。

    通讯作者:

    王宇 yuwang@mail.ie.ac.cn

  • 中图分类号: TN959

Brief Analysis on the Development and Application of Spaceborne SAR

  • 摘要: 星载合成孔径雷达(Synthetic Aperture Radar, SAR)作为一种主动式微波成像传感器,能够不受天气、气候以及光线的影响,可以全天时、全天候地成像,因此,星载合成孔径雷达已发展成为一种不可或缺的对地观测工具。随着技术的进步,未来星载SAR将实现高分辨率宽测绘带、低成本、小型化、多基多模式微波成像,并具有地面运动目标指示的能力,在最小的成本下获得最丰富的地物信息。这迫切需要星载SAR系统在新模式、新体制、新技术方面取得重大突破。该文将围绕星载合成孔径雷达技术发展现状及未来趋势展开论述。

     

  • 图1  Sentinel-1示意图

    图2  TerraSAR-X条带模式高分辨率图像(迪拜棕榈岛)

    图3  TerraSAR-X聚束模式高分辨率图像(巴西某矿区)

    图4  X波段0.15 m多极化雷达图像(中国科学院电子学研究所航天微波遥感部提供)

    图5  TerraSAR-X/TanDEM-X在轨工作示意图

    图6  TerraSAR-X/TanDEM-X双基干涉图(300 MHz,滑动聚束模式)

    图7  舰船速度检测与位置定位

    图8  TerraSAR-X/PAMIR星-地双基工作示意图

    图9  TerraSAR-X/PAMIR星-地双基成像结果(300 MHz, 滑动聚束模式)

    图10  3维SAR图像

    图11  4维SAR图像(右边的刻度代表形变量:mm)

    图12  多极化雷达图像(中国科学院电子学研究所航天微波遥感部提供)

    图13  SAR-Lupe在轨工作示意图

    图14  MiniSAR月球探测系统工作示意图

    图15  MiniSAR月球南北极地区图像

    图16  微型SAR天线和中央电子设备图

    图17  微型SAR高分辨率雷达图像(中国科学院电子学研究所航天微波遥感部提供)

    图18  Strip-Scan混合模式工作

    图19  Boeing X-37 SAR在太空的形态

    图20  SAR与光学图像融合(中国科学院电子学研究所航天微波遥感部提供)

  • [1] Curlander J C and Robert N McDonough. SyntheticAperture Radar Systems and Signal Processing[M]. John Wiley & Sons 1991, Chapter 1.
    [2] Krieger G and Moreira A. Spaceborne bi- and multistatic SAR: potential and challenges[J]. IEE Radar, Sonar & Navigation, 2006, 153(3): 184-198.
    [3] Krieger G, Moreira A, Fiedler H, et al.. TanDEM-X: a satellite formation for high-resolution SAR interferometry[J]. IEEE Transanctions on Geoscience Remote Sensing, 2007, 45(11): 3317-3341.
    [4] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: techniques and optimization strategies for high-resolution and wide-swath SAR imaging[J]. IEEE Transanctions on Aerospace Electronic Systems, 2009, 45(2): 564-592.
    [5] Younis M, Huber S, Patyuchenko A, et al.. Performance comparison of fefelctor-and planar-antenna based digital beam-forming SAR[J]. International Journal of Antenna and Propagation (Special Issue on Active Antennas for Space Applications), 2009: 1-13.
    [6] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transanctions on Geoscience Remote Sensing, 2008, 46(1): 31-46.
    [7] Rincon R F, Vega M A, Buenfil M, et al.. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transanctions on Geoscience Remote Sensing, 2011, 49(10): 3622-3628.
    [8] Ender J H G, Gierull C H, and Cerutti-Maori D. Improved space-based moving target indication via alternate transmission and receiver switching[J]. IEEE Transanctions on Geoscience Remote Sensing, 2008, 46(12): 3960-3974.
    [9] Cerutti-Maori D, Ender J H G, and Gierull C H. Experimental verification of SAR-GMTI improvement through antenna switching[J]. IEEE Transanctions on Geoscience Remote Sensing, 2010, 48(4): 2066-2075.
    [10] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005, Chapter 1.
    [11] Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar Signal Processing Algorithms[M]. Boston, MA: Artech House, 1995, Chapter 1.
    [12] Franceschetti G and Lanari R. Synthetic Aperture Radar Processing[M]. CRC Press: Boca Raton, 1999, Chapters 1 and 2.
    [13] Younis M, Bordoni F, Gebert N, et al.. Smart multi-aperture radar techniques for spaceborne remote sensing[C].Proceeding of the IEEE International Geoscience and Remote Sensing Symposium 2008 (IGARSS’08), Boston, MA, USA, July 2008. [CD-ROM]
    [14] Wang R, Deng Y K, Loffeld O, et al.. Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on 2D principle of stationary phase[J]. IEEE Transanctions on Geoscience Remote Sensing, 2011, 49(10): 3504-3520.
    [15] Wang R, Loffeld O, Nies H, et al.. Frequency-domain Bistatic SAR processing for spaceborne/airborne configuration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1329-1345.
    [16] Walterscheid I, Espeter T, Brenner AR, et al.. Bistatic SAR experiments with PAMIR and TerraSAR-X-setup, processing, and image results[J]. IEEE Transanctions on Geoscience Remote Sensing, 2010, 48(8): 3268-3279.
    [17] Suess M, Grafmueller B, and Zahn R. A novel high resolution, wide swath SAR system[C]. Proceeding of the IEEE International Geoscience and Remote Sensing Symposium 2001 (IGARSS’01), Sydeny Australia, July 2001: 1013-1015.
    [18] Fornaro G, Lombardini F, and Serafino F. Three- dimensional multipass SAR focusing: experiments with long-term spaceborne data[J]. IEEE Transanctions on Geoscience Remote Sensing, 2005, 43(4): 702-714.
    [19] Fornaro G, Serafino F, and Soldovieri F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transanctions on Geoscience Remote Sensing, 2003, 41(3): 507-517.
    [20] Fornaro G, Reale D and Serafino F. Four-dimensional SAR imaging for height estimation and monitoring of single and double scatters[J]. IEEE Transanctions on Geoscience Remote Sensing, 2009, 47(1): 224-237.
    [21] Zhu X and Bamler R. Very high resolution SAR tomography via compressive sensing[C]. Proceeding ESA FRINGE Workshop Advanced Science Applation SAR Interferometry, Frascati, Italy, 2009.
    [22] Wang R, Loffeld O, Nies H, et al.. Focus FMCW SAR data using wavenumber domain algorithm[J]. IEEE Transanctions on Geoscience Remote Sensing, 2010, 48(4): 2109-2118.
    [23] Liu Y, Deng Y K, and Wang R. CARMSAR-a compact and reconfigurable miniature SAR system for high resolution remote sensing[C]. The 9th European Conference on Synthetic Aperture Radar (EUSAR 2012), Germany, April 2012.
  • 加载中
图(20)
计量
  • 文章访问数:  9346
  • HTML全文浏览量:  1269
  • PDF下载量:  20157
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-22
  • 修回日期:  2012-03-27
  • 网络出版日期:  2012-03-01

目录

    /

    返回文章
    返回