一种面向轻小型无人机载分布式层析SAR的时变基线估计算法

李航 郭其昌 卜祥玺 戴宇杰 姜治羽 莘济豪 李焱磊 梁兴东

李航, 郭其昌, 卜祥玺, 等. 一种面向轻小型无人机载分布式层析SAR的时变基线估计算法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25268
引用本文: 李航, 郭其昌, 卜祥玺, 等. 一种面向轻小型无人机载分布式层析SAR的时变基线估计算法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25268
LI Hang, GUO Qichang, BU Xiangxi, et al. Time-Varying baseline estimation algorithm for small uavs-borne distributed tomosar[J]. Journal of Radars, in press. doi: 10.12000/JR25268
Citation: LI Hang, GUO Qichang, BU Xiangxi, et al. Time-Varying baseline estimation algorithm for small uavs-borne distributed tomosar[J]. Journal of Radars, in press. doi: 10.12000/JR25268

一种面向轻小型无人机载分布式层析SAR的时变基线估计算法

DOI: 10.12000/JR25268 CSTR: 32380.14.JR25268
基金项目: 请补充
详细信息
    作者简介:

    李 航,博士生,主要研究方向为轻小型无人机载分布式层析SAR成像技术

    郭其昌,助理研究员,主要研究方向为SAR信号处理,新体制SAR处理技术

    卜祥玺,副研究员,硕士生导师,主要研究方向为新体制微波成像系统技术

    戴宇杰,博士生,主要研究方向为SAR 信号处理

    姜治羽,博士生,主要研究方向为高精度无线时频相同步

    莘济豪,助理研究员,主要研究方向为高精度无线时频相同步技术

    李焱磊,研究员,硕士生导师,主要研究方向为新体制雷达信号处理、一体化信号波形设计、可重构异构处理架构、穿墙感知雷达技术

    梁兴东,研究员,博士生导师,主要研究方向为新概念新体制雷达通信一体化系统、高分辨率合成孔径雷3达系统、干涉合成孔径雷达系统、成像处理及应用、实时信号处理

    通讯作者:

    郭其昌 guoqc1992@126.com

    梁兴东 liangxd@aircas.ac.cn

    责任主编:王岩 Corresponding Editor: WANG Yan

  • 中图分类号: TN957.52

Time-Varying Baseline Estimation Algorithm for Small UAVs-Borne Distributed TomoSAR

Funds: 请补充
More Information
  • 摘要: 轻小型无人机载分布式层析合成孔径雷达(SAR)系统受限于载荷,难以搭载高精度定位定姿系统,且其飞行轨迹易受低空大气湍流影响,导致系统中存在显著的残余时变基线误差,严重降低目标三维重建精度。与飞行高度较高的常规机载重轨三维SAR系统相比,轻小型无人机载分布式层析SAR系统的飞行高度低,对时变基线误差的补偿精度要求更为苛刻。在图像信噪比较低且系统中存在较大的时变基线误差的情况下,现有时变基线估计方法难以获得稳定可靠的估计结果。针对上述问题,该文提出一种基于图像方位偏移量的两步式时变基线误差估计算法。该方法通过分块配准与曲面拟合、子孔径处理两个步骤,依次估计时变基线误差,并采用迭代策略进一步提升估计精度。基于C波段轻小型无人机载分布式层析SAR的实测数据验证结果表明,与EMSP方法相比,所提方法在多数通道上可显著降低子孔径干涉相位差分的均方根值,有效提升通道间相干性,所提方法获得的点云高程向标准差由5.16 m降低至1.33 m,建筑目标的高度重建误差优于0.5 m,验证了所提方法的有效性与优势。

     

  • 图  1  分布式层析SAR成像几何

    Figure  1.  Distributed TomoSAR imaging geometry

    图  2  仿真实验收发站点相对位置

    Figure  2.  Relative positions of transceiver sites in the simulation

    图  3  目标正确重建概率与站点位置测量误差的关系

    Figure  3.  Probability of correct reconstruction vs. site location measurement errors

    图  4  不同子孔径带宽下,EMSP方法的处理效果图

    Figure  4.  Processing results of the EMSP method under different sub-aperture bandwidth

    图  5  所提方法流程图

    Figure  5.  Flowchart of the proposed method

    图  6  方位向偏移量与时变基线误差之间的关系

    Figure  6.  Geometric relationship between azimuth displacement and the time-varying baseline-errors

    图  7  分布式层析SAR实验编队构型

    Figure  7.  Experimental formation geometry for distributed TomoSAR

    图  8  通道等效相位中心相对位置

    Figure  8.  Relative position diagram of equivalent phase centers

    图  9  测试区域的SAR图像和对应的光学影像

    Figure  9.  SAR image and optical image of the test area

    图  10  时变基线误差补偿前后主图像(CH7)与其他辅图像间的干涉相位图

    Figure  10.  Interferometric phase between the master (CH7) and other slave images before and after time-varying baseline error compensation

    图  11  不同方法估计时变基线误差后相干系数变化曲线图

    Figure  11.  Coherence coefficient variation curves after estimating the time-varying baseline error using different methods

    图  12  不同方法估计时变基线误差时干涉相位差分值的RMS变化曲线图

    Figure  12.  RMS variation curves of interferometric phase differences during time-varying baseline error estimation using different methods

    图  13  线性和常数项基线误差校正后干涉相位图

    Figure  13.  Interferometric phase map after linear and constant baseline error correction

    图  14  三维重建效果对比图

    Figure  14.  Comparison of 3-D reconstruction Results

    表  1  仿真实验主要参数

    Table  1.   Main parameters of the simulation experiment

    参数 数值
    载波波段 C
    收发模式 2T4R
    平台飞行高度(m) 300, 1000, 3000
    中心下视角(°) 60
    点目标高度(m) 5, 10, 15
    最长基线(m) 21
    基线倾角(°) 0
    下载: 导出CSV

    表  2  分布式飞行实验主要系统参数

    Table  2.   System parameters of the C-Band distributed TomoSAR experiment

    参数数值
    载波波段C
    距离向分辨率(m)0.38
    方位向分辨率(m)0.10
    下视角(°)55
    飞行速度(m/s)3.00
    最长高程向基线(m)10.26
    高程向瑞利分辨率(m)1.50
    下载: 导出CSV
  • [1] ZHU Xiaoxiang and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098.
    [2] LIN Yuqing, QIU Xiaolan, and DING Chibiao. TomoSAR three-dimensional image restoration in urban area by multipath exploitation[C]. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 2031–2035. doi: 10.1109/IGARSS53475.2024.10642195.
    [3] WANG Yan, DING Zegang, LI Linghao, et al. First demonstration of single-pass distributed SAR tomographic imaging with a P-band UAV SAR prototype[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5238618. doi: 10.1109/TGRS.2022.3221859.
    [4] BUDILLON A, FERRAIOLI G, JOHNSY A C, et al. TomoSAR application for early warning in infrastructure health monitoring[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3621–3624. doi: 10.1109/IGARSS.2019.8898674.
    [5] YANG Wenyu, VITALE S, AGHABABAEI H, et al. A deep learning solution for height inversion on forested areas using single and dual polarimetric TomoSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 2505605. doi: 10.1109/LGRS.2023.3322782.
    [6] PARDINI M, CAZCARRA-BES V, and PAPATHANASSIOU K P. TomoSAR mapping of 3D forest structure: Contributions of L-band configurations[J]. Remote Sensing, 2021, 13(12): 2255. doi: 10.3390/rs13122255.
    [7] SHAHZAD M, MAURER M, FRAUNDORFER F, et al. Buildings detection in VHR SAR images using fully convolution neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1100–1116. doi: 10.1109/TGRS.2018.2864716.
    [8] SHAKHATREH H, SAWALMEH A H, AL-FUQAHA A, et al. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges[J]. IEEE Access, 2019, 7: 48572–48634. doi: 10.1109/ACCESS.2019.2909530.
    [9] WANG Huan, LIU Yunlong, LI Yanlei, et al. Improved real-time SPGA algorithm and hardware processing architecture for small UAVs[J]. Remote Sensing, 2025, 17(13): 2232. doi: 10.3390/rs17132232.
    [10] BRANCATO V, JÄGER M, SCHEIBER R, et al. A motion compensation strategy for airborne repeat-pass SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1580–1584. doi: 10.1109/LGRS.2018.2848596.
    [11] REIGBER A. Correction of residual motion errors in airborne SAR interferometry[J]. Electronics Letters, 2001, 37(17): 1083–1084. doi: 10.1049/el:20010724.
    [12] REIGBER A and SCHEIBER R. Airborne differential SAR interferometry: First results at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1516–1520. doi: 10.1109/TGRS.2003.814610.
    [13] REIGBER A, PRATS P, and MALLORQUI J J. Refined estimation of time-varying baseline errors in airborne SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 145–149. doi: 10.1109/LGRS.2005.860482.
    [14] ZHONG Xuelian, XIANG Maosheng, YUE Huanyin, et al. Algorithm on the estimation of residual motion errors in airborne SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1311–1323. doi: 10.1109/TGRS.2013.2249665.
    [15] CAO Ning, LEE H, ZAUGG E, et al. Estimation of residual motion errors in airborne SAR interferometry based on time-domain backprojection and multisquint techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2397–2407. doi: 10.1109/TGRS.2017.2779852.
    [16] WANG Huiqiang, FU Haiqiang, ZHU Jianjun, et al. Correction of time-varying baseline errors based on multibaseline airborne interferometric data without high-precision DEMs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9307–9318. doi: 10.1109/TGRS.2020.3041056.
    [17] DE MACEDO K A C, SCHEIBER R, and MOREIRA A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151–3162. doi: 10.1109/TGRS.2008.924004.
    [18] LUOMEI Yixiang and XU Feng. Real-time implementation of segmental aperture imaging algorithm for multirotor-borne minisar[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4529–4532. doi: 10.1109/IGARSS46834.2022.9883374.
    [19] FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. A wavelet decomposition and polynomial fitting-based method for the estimation of time-varying residual motion error in airborne interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 49–59. doi: 10.1109/TGRS.2017.2727076.
    [20] TEBALDINI S, ROCCA F, MARIOTTI D’ALESSANDRO M, et al. Phase calibration of airborne tomographic SAR data via phase center double localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1775–1792. doi: 10.1109/TGRS.2015.2488358.
    [21] ZENG Guobing, XU Huaping, WANG Yuan, et al. A novel method for airborne SAR tomography baseline error correction driven by small baseline interferometric phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5225013. doi: 10.1109/TGRS.2024.3478055.
    [22] IMPERATORE P and FORNARO G. Joint phase-screen estimation in airborne multibaseline SAR tomography data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4412614. doi: 10.1109/TGRS.2024.3446186.
    [23] ZHU Xiaoxiang and BAMLER R. Demonstration of super-resolution for tomographic SAR imaging in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3150–3157. doi: 10.1109/TGRS.2011.2177843.
    [24] BUCKREUSS S. Motion compensation for airborne SAR based on inertial data, RDM and GPS[C]. IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 1994: 1971–1973. doi: 10.1109/IGARSS.1994.399626.
    [25] CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
    [26] 张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. [博士论文], 中国科学院大学, 2015: 34–37.

    ZHANG Fubo. Research on Signal Processing of 3-D reconstruction in Linear Array Synthetic Aperture Radar Interferometry[D]. [Ph.D. dissertation], The University of Chinese Academy of Sciences, 2015: 34-37.
    [27] REIGBER A and PAPATHANASSIOU K P. Correction of residual motion errors in airborne repeat-pass interferometry[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 2001: 3077–3079. doi: 10.1109/IGARSS.2001.978260.
    [28] CHENG Kexin and DONG Youqiang. An image compensation-based range-Doppler model for SAR high-precision positioning[J]. Applied Sciences, 2024, 14(19): 8829. doi: 10.3390/app14198829.
    [29] XU Bing, LI Zhiwei, WANG Qijie, et al. A refined strategy for removing composite errors of SAR interferogram[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 143–147. doi: 10.1109/LGRS.2013.2250903.
    [30] 邓袁. 机载重轨干涉SAR高精度配准算法研究[D]. [硕士论文], 中国科学院大学, 2014: 5–7.

    DENG Yuan. Research on Highly Precise Registration Algorithm of Airborne Repeat-Pass Interferometric SAR[D]. [Master dissertation], The University of Chinese Academy of Sciences, 2014: 5-7.
    [31] PRATS P, SCHEIBER R, REIGBER A, et al. Estimation of the surface velocity field of the Aletsch glacier using multibaseline airborne SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 419–430. doi: 10.1109/TGRS.2008.2004277.
    [32] ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1 -norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-11

目录

    /

    返回文章
    返回