数字阵雷达低慢小探测数据集(LSS-DAUR-1.0)及图网络目标分类方法

陈小龙 刘佳 汪兴海 王金豪 关键 张月

陈小龙, 刘佳, 汪兴海, 等. 数字阵雷达低慢小探测数据集(LSS-DAUR-1.0)及图网络目标分类方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25240
引用本文: 陈小龙, 刘佳, 汪兴海, 等. 数字阵雷达低慢小探测数据集(LSS-DAUR-1.0)及图网络目标分类方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25240
CHEN Xiaolong, LIU Jia, WANG Xinghai, et al. Digital array radar lss-target detection dataset (LSS-DAUR-1.0) and graph network-based target classification[J]. Journal of Radars, in press. doi: 10.12000/JR25240
Citation: CHEN Xiaolong, LIU Jia, WANG Xinghai, et al. Digital array radar lss-target detection dataset (LSS-DAUR-1.0) and graph network-based target classification[J]. Journal of Radars, in press. doi: 10.12000/JR25240

数字阵雷达低慢小探测数据集(LSS-DAUR-1.0)及图网络目标分类方法

DOI: 10.12000/JR25240 CSTR: 32380.14.JR25240
基金项目: 国家自然科学基金(U25B2016),国家重点研发计划(2024YFB3909800),山东省自然科学基金(ZR2024JQ003)
详细信息
    作者简介:

    陈小龙,博士,教授,主要研究方向为雷达低慢小目标检测、海杂波抑制、雷达智能信号处理等

    刘  佳,硕士生,主要研究方向为雷达目标智能识别

    汪兴海,硕士,副教授,主要研究方向为雷达系统设计、数字信号处理等

    王金豪,硕士生,主要研究方向为低慢小目标多域多特征检测

    关 键,博士,教授,博士生导师,主要研究方向包括雷达目标检测与跟踪、侦察图像处理和信息融合

    张 月,博士,副教授,主要研究方向为全息雷达技术、宽带数字化技术等

    通讯作者:

    陈小龙 cxlcxl1209@163.com

    刘佳 2286283692@qq.com

    责任主编:杜兰 Corresponding Editor: DU Lan

  • 中图分类号: TN957.51

Digital Array Radar LSS-target Detection Dataset (LSS-DAUR-1.0) and Graph Network-based Target Classification

Funds: The National Natural Science Foundation of China (U25B2016), National Key Research and Development Program of China (2024YFB3909800), Shandong Natural Science Foundation (ZR2024JQ003)
More Information
  • 摘要: 针对低慢小(LSS)目标雷达分类中存在的特征提取不充分、时空关联建模能力薄弱及分类性能欠佳等问题,本文围绕图网络特征提取和分类技术开展研究。首先,聚焦数字阵泛探雷达,构建了雷达低慢小目标探测数据集LSS-DAUR-1.0,包含客轮、快艇、直升机、旋翼无人机、鸟类与固定翼无人机6类目标的多普勒和航迹数据。其次,基于该数据集分析了目标的多域多维特性,通过相关性和余弦相似度分析,验证了多普勒特征与物理运动特征的互补性。在此基础上,提出融合双特征的动态图图卷积网络(DG-GCN)分类方法设计自适应窗口调整、混合衰减函数和动态阈值机制,构建时空关联自适应动态图,结合图卷积特征学习和分类模块,实现对低慢小目标的精细化分类。LSS-DAUR-1.0数据集验证表明,DG-GCN分类准确率达99.66%,较ResNet和Transformer模型分别提升6.78%和17.97%,总处理时间仅4.98 ms,较对比模型降低80%以上,兼顾高精度与高效性。此外,噪声环境测试其鲁棒性良好。消融实验验证,动态边权机制可弥补纯时序连接的空间特征关联上不足,提升模型泛化能力。

     

  • 图  1  LSS-DAUR-1.0数据集中目标照片

    Figure  1.  Target photos in the LSS-DAUR-1.0 dataset

    图  2  数据采集场景示意图

    Figure  2.  Schematic diagram of the data acquisition scenario

    图  3  目标数据采集流程图

    Figure  3.  Flowchart of target data collection

    图  4  LSS-DAUR-1.0数据集结构示意图

    Figure  4.  Schematic diagram of the structure of the LSS-DAUR-1.0 dataset

    图  5  各类目标多普勒瀑布图对比

    Figure  5.  Comparison of Doppler waterfall diagrams of various targets

    图  6  各类目标二维航迹图

    Figure  6.  Two-dimensional trajectory maps of various targets

    图  7  各类目标运动学统计图

    Figure  7.  Kinematic statistical graphs of various targets

    图  8  多普勒特征与雷达观测特征的相关性分析

    Figure  8.  Analysis of the correlation between doppler characteristics and radar observation characteristics

    图  9  各类目标类内样本相似度分布箱形图

    Figure  9.  Box plot of similarity distribution of samples within various target classes

    图  10  基于DG-GCN的目标分类方法流程

    Figure  10.  Target classification method process based on DG-GCN

    图  11  直升机样本25时序邻接边窗口半径变化

    Figure  11.  Variation of window radius of temporal adjacency edges for the 25th Helicopter sample

    图  12  时序衰减权重随距离变化曲线

    Figure  12.  Curve of time series attenuation weight varying with distance

    图  13  直升机样本25特征相似边阈值生成示意图

    Figure  13.  Schematic diagram of threshold generation for feature similar edges of the 25th Helicopter sample

    图  14  直升机样本25构建的图结构

    Figure  14.  Graph structure constructed from the 25th sample of the helicopter

    图  15  直升机样本25归一化边权矩阵分布

    Figure  15.  Distribution of the normalized edge weight matrix for helicopter sample 25

    图  16  双层动态图图卷积网络结构

    Figure  16.  Double-layer graph convolutional network with dynamic graph construction structure

    图  17  最佳参数组合下的时序衰减权重变化

    Figure  17.  Changes in time-series decay weights under the optimal parameter combination

    图  18  各模型训练准确率曲线

    Figure  18.  Accuracy curves of each model during training

    图  19  不同信噪比下所提方法分类准确率

    Figure  19.  Classification accuracy of the proposed method under different signal-to-noise ratios

    图  20  在SNR =5 dB噪声下训练和验证损失曲线

    Figure  20.  20 Training and validation loss curves under SNR = 5 dB noise

    图  21  在SNR =5 dB噪声下训练和验证准确率曲线

    Figure  21.  Training and validation accuracy curves under SNR = 5 dB noise

    图  22  在SNR =5 dB噪声下的分类混淆矩阵

    Figure  22.  Classification confusion matrix under SNR = 5 dB noise

    图  23  3层GCN模型训练和验证损失曲线

    Figure  23.  23 Training and validation loss curves of the 3-layer GCN model

    图  24  3层GCN训练和验证准确率曲线

    Figure  24.  Training and validation accuracy curves of the 3-layer GCN model

    表  1  DAUR参数

    Table  1.   Parameters of the digital ubiquitous radar

    雷达参数数值
    载频(GHz)1.36
    带宽(MHz)4
    发射功率(W)400
    脉冲重复频率(kHz)5
    脉宽(μs)2
    速度单元(m/s)0.1346
    多普勒通道数512
    下载: 导出CSV

    表  2  样本扩充统计结果

    Table  2.   Statistical results of sample augmentation

    目标类别原始航迹数总帧数步长大小截取后航迹数截取后样本编号
    客轮102704102461-246
    快艇11145652311-231
    直升机1093032171-217
    旋翼无人机18173552501-250
    172787102371-237
    固定翼无人机11176252931-293
    总计77140781474
    下载: 导出CSV

    表  3  模型超参数设置

    Table  3.   Model hyperparameter settings

    参数名称参数设置说明
    优化器AdamW动量参数$ {\beta }_{1}=0.9 $,$ {\beta }_{2}=0.999 $
    初始学习率$ 3\times {10}^{-4} $采用余弦退火调度策略动态调整
    权重衰减系数$ 1\times {10}^{-5} $约束模型权重幅值,防止过拟合
    学习率调度CosineAnnealingLR周期$ {T}_{max}=100 $,最小学习率$ 1\times {10}^{-6} $
    L2正则化系数$ \lambda =0.0005 $对所有权重参数施加L2范数惩罚
    Dropout概率0.5随机丢弃神经元,增强泛化性
    批量大小32单次训练输入样本数
    最大训练轮数100训练终止条件之一
    下载: 导出CSV

    表  4  数据集划分

    Table  4.   Dataset Division

    目标类别总航迹数训练集航迹编号验证集航迹编号总样本数总样本占比训练集样本数验证集样本数
    客轮101, 2, 3, 4, 5, 86, 7, 9, 1024616.69%19650
    快艇111, 3, 7, 8, 112, 4, 5, 6, 9, 1023115.67%18447
    直升机101, 2, 3, 5, 6, 7, 84, 9, 1021714.72%17344
    旋翼无人机181, 2, 4, 5, 7, 13, 14, 15, 173, 9, 10, 11, 12, 16, 1825016.96%20050
    172, 5, 6, 7, 8, 9, 10, 11, 131, 3, 4, 12, 14, 15, 16, 1723716.08%18948
    固定翼无人机112, 3, 4, 5, 6, 7, 8, 9, 101, 1129319.88%23459
    总计771474100.00%1179295
    下载: 导出CSV

    表  5  动态边权参数搜索空间

    Table  5.   Search space of dynamic edge weight parameters

    参数物理意义搜索范围最优值
    $ \lambda $时序衰减权重系数,控制指数衰减与高斯衰减的相对重要性[0.2, 0.8]0.46
    $ \beta $指数衰减速率,决定时序相关性随距离衰减的速度[0.1, 1.2]0.10
    $ \sigma $高斯核宽度,控制高斯衰减函数的平滑程度[1.0, 3.5]2.40
    $ \alpha $特征权重分配系数,调节特征相似边权重的分配比例[0.1, 0.6]0.33
    $ \eta $边权融合系数,控制时序边与特征边融合时的次要权重增强[0.2, 0.7]0.59
    下载: 导出CSV

    表  6  不同模型分类性能对比

    Table  6.   Performance comparison of different models

    模型准确率(%)F1分数参数量(M)平均预处理时间(ms)平均推理时延(ms)总处理时间(ms)输入数据类型
    DG-GCN(本文方法)99.660.99660.234.450.534.98多普勒+物理参数
    CBAM-Swin-Transformer[22]81.690.816549.182429.8653.86多普勒瀑布图
    VGGNet77.970.779668.21244.6628.66多普勒瀑布图
    ResNet92.880.926624.56246.9330.93多普勒瀑布图
    LSTM90.850.90781.3501.781.78多普勒+物理参数
    注:其中VGGNet, ResNet, CBAM-Swin-Transformer的预处理时间包括单样本数据处理、图像绘制和图像保存时间,本文方法预处理时间是指单样本构图时间。
    下载: 导出CSV

    表  7  消融实验结果对比

    Table  7.   Comparison of ablation experiment results

    方法准确率(%)准确率下降(%)F1分数说明
    完整模型99.660.9966动态边权构建算法+2层GCN
    无物理运动参数97.292.370.9729仅使用512维多普勒谱,移除所有物理参数
    固定图结构96.613.050.9661移除特征相似边,时序邻接边窗口半径固定为3
    无特征相似边95.594.070.9558移除特征相似边,保留时序边权机制
    无自适应边权96.273.330.9623时序边和特征相似边固定权重为0.6和0.3
    1层GCN95.933.730.9595GCN结构:160→64,仅1层卷积
    3层GCN96.952.710.9694GCN结构:160→128→96→64,3层卷积
    下载: 导出CSV
  • [1] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068.

    CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068.
    [2] 郭瑞, 张月, 田彪, 等. 全息凝视雷达系统技术与发展应用综述[J]. 雷达学报, 2023, 12(2): 389–411. doi: 10.12000/JR22153.

    GUO Rui, ZHANG Yue, TIAN Biao, et al. Review of the technology, development and applications of holographic staring radar[J]. Journal of Radars, 2023, 12(2): 389–411. doi: 10.12000/JR22153.
    [3] JAHANGIR M and BAKER C J. L-band staring radar performance against micro-drones[C]. 2018 19th International Radar Symposium, Bonn, Germany, 2018: 1–10. doi: 10.23919/IRS.2018.8448107.
    [4] BENNETT C, JAHANGIR M, FIORANELLI F, et al. Use of symmetrical peak extraction in drone micro-Doppler classification for staring radar[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6. doi: 10.1109/RadarConf2043947.2020.9266702.
    [5] JAHANGIR M, ATKINSON G M, ANTONIOU M, et al. Measurements of birds and drones with L-band staring radar[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–10. doi: 10.23919/IRS51887.2021.9466224.
    [6] GRIFFIN B, BALLERI A, BAKER C, et al. Prototyping a dual-channel receiver for use in a staring cooperative radar network for the detection of drones[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–7. doi: 10.23919/IRS51887.2021.9466221.
    [7] 徐世友, 戴婷, 陈曾平. 基于多维特征的全息雷达“低慢小”目标识别[J]. 现代雷达, 2022, 44(11): 1–9. doi: 10.16592/j.cnki.1004-7859.2022.11.001.

    XU Shiyou, DAI Ting, and CHEN Zengping. LSS target recognition in holographic radar based on multi-dimensional features[J]. Modern Radar, 2022, 44(11): 1–9. doi: 10.16592/j.cnki.1004-7859.2022.11.001.
    [8] 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.

    CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.
    [9] 贺治华, 段佳, 芦达. 雷达海面目标识别技术研究进展[J]. 科技导报, 2017, 35(20): 61–68. doi: 10.3981/j.issn.1000-7857.2017.20.006.

    HE Zhihua, DUAN Jia, and LU Da. A review of radar sea target recognition technology[J]. Science & Technology Review, 2017, 35(20): 61–68. doi: 10.3981/j.issn.1000-7857.2017.20.006.
    [10] 田凯祥, 于恒力, 王中训, 等. 基于雷达目标特征可分性的一维特征选择方法[J]. 海军航空大学学报, 2024, 39(4): 453–460,500. doi: 10.7682/j.issn.2097-1427.2024.04.007.

    TIAN Kaixiang, YU Hengli, WANG Zhongxun, et al. One-dimensional feature selection method based on radar target feature divisibility[J]. Journal of Naval Aviation University, 2024, 39(4): 453–460,500. doi: 10.7682/j.issn.2097-1427.2024.04.007.
    [11] KUMAWAT H C, CHAKRABORTY M, RAJ A A B, et al. DIAT-μSAT: Small aerial targets’ micro-Doppler signatures and their classification using CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6004005. doi: 10.1109/LGRS.2021.3102039.
    [12] PARK D, LEE S, PARK S, et al. Radar-spectrogram-based UAV classification using convolutional neural networks[J]. Sensors, 2021, 21(1): 210. doi: 10.3390/s21010210.
    [13] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077.

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077.
    [14] WANG Jinhao, CHEN Xiaolong, GUAN Jian, et al. A time-frequency representation method based on ETF-MDNet for radar target micro-motion features[J]. Chinese Journal of Electronics, 2025, 34(4): 1199–1208. doi: 10.23919/cje.2024.00.233.
    [15] YU Xiaojie, WEI Song, FANG Yuyuan, et al. Low-altitude slow small target threat assessment algorithm by exploiting sequential multifeature with long short-term memory[J]. IEEE Sensors Journal, 2023, 23(18): 21524–21533. doi: 10.1109/JSEN.2023.3301090.
    [16] Zhu J, Chen H, Ye W. A hybrid CNN–LSTM network for the classification of human activities based on micro-Doppler radar[J]. IEEE Access, 2020, 8: 24713–24720. doi: 10.1109/ACCESS.2020.2971064.
    [17] SONG Qiang, HUANG Shilin, ZHANG Yue, et al. Radar target classification using enhanced Doppler spectrograms with ResNet34_CA in ubiquitous radar[J]. Remote Sensing, 2024, 16(15): 2860. doi: 10.3390/rs16152860.
    [18] WU Qi, CHEN Jie, LU Yue, et al. A complete automatic target recognition system of low altitude, small RCS and slow speed (LSS) targets based on multi-dimensional feature fusion[J]. Sensors, 2019, 19(22): 5048. doi: 10.3390/s19225048.
    [19] YUAN Wang, CHEN Xiaolong, DU Xiaolin, et al. A low slow small target classification network model based on K-band radar dynamic multifeature data fusion[J]. IEEE Sensors Journal, 2025, 25(1): 1656–1668. doi: 10.1109/JSEN.2024.3496493.
    [20] 陈小龙, 袁旺, 杜晓林, 等. 多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法[J]. 雷达学报(中英文), 2025, 14(5): 1276–1293. doi: 10.12000/JR25004.

    CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multi-band multi-angle FMCW radar low-slow-small target detection dataset (LSS-FMCWR-2.0) and feature fusion classification methods[J]. Journal of Radars, 2025, 14(5): 1276–1293. doi: 10.12000/JR25004.
    [21] 赵子健, 许述文, 水鹏朗. 基于多域雷达回波数据融合的海面小目标分类网络模型[J]. 电子与信息学报, 2025, 47(3): 696–706. doi: 10.11999/JEIT240818.

    ZHAO Zijian, XU Shuwen, and SHUI Penglang. A network model for sea surface small targets classification based on multidomain radar echo data fusion[J]. Journal of Electronics & Information Technology, 2025, 47(3): 696–706. doi: 10.11999/JEIT240818.
    [22] 何肖阳, 陈小龙, 杜晓林, 等. 基于CBAM-Swin-Transformer迁移学习的海上微动目标分类方法[J]. 系统工程与电子技术, 2025, 47(4): 1155–1167. doi: 10.12305/j.issn.1001-506X.2025.04.12.

    HE Xiaoyang, CHEN Xiaolong, DU Xiaolin, et al. Classification of maritime micromotion target based on transfer learning in CBAM-Swin-Transformer[J]. Systems Engineering and Electronics, 2025, 47(4): 1155–1167. doi: 10.12305/j.issn.1001-506X.2025.04.12.
    [23] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. doi: 10.1109/TNN.2008.2005605.
    [24] KHEMANI B, PATIL S, KOTECHA K, et al. A review of graph neural networks: Concepts, architectures, techniques, challenges, datasets, applications, and future directions[J]. Journal of Big Data, 2024, 11(1): 18. doi: 10.1186/s40537-023-00876-4.
    [25] SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Maritime target detection based on radar graph data and graph convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019705. doi: 10.1109/LGRS.2021.3133473.
    [26] SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Radar Maritime Target detection via spatial–temporal feature attention graph convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5102615. doi: 10.1109/TGRS.2024.3358862.
    [27] Meng Han, Peng Yuexing, Wang Wenbo, et al. Spatio-temporal-frequency graph attention convolutional network for aircraft recognition based on heterogeneous radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5548–5559. doi: 10.48550/arXiv.2204.07360.
    [28] Meng Han, Peng Yuexing, Xiang Wei, et al. Semantic feature-enhanced graph attention network for radar target recognition in heterogeneous radar network[J]. IEEE Sensors Journal, 2023, 23(7): 6369–6377. doi: 10.1109/JSEN.2023.3250708.
    [29] CHEN Lingfeng, PAN Zhiliang, LIU Qi, et al. HRRPGraphNet++: Dynamic graph neural network with meta-learning for few-shot HRRP radar target recognition[J]. Remote Sensing, 2025, 17(12): 2108. doi: 10.3390/rs17122108.
    [30] MENG Han, PENG Yuexing, and WANG Wenbo. Dynamic graph network augmented by contrastive learning for radar target classification[C]. 2024 IEEE Radar Conference, Denver, USA, 2024: 1–6. doi: 10.1109/RadarConf2458775.2024.10548626.
    [31] LIN Huiping, XIE Zixuan, ZENG Liang, et al. Multi-scale time-frequency representation fusion network for target recognition in SAR imagery[J]. Remote Sensing, 2025, 17(16): 2786. doi: 10.3390/rs17162786.
    [32] CHEN Lingfeng, SUN Xiao, PAN Zhiliang, et al. HRRPGraphNet: Make HRRPs to be graphs for efficient target recognition[J]. Electronics Letters, 2024, 60(22): e70088. doi: 10.1049/ell2.70088.
    [33] WANG Ruiqiu, SU Tao, XU Dan, et al. MIGA-Net: Multi-view image information learning based on graph attention network for SAR target recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(11): 10779–10792. doi: 10.1109/TCSVT.2024.3418979.
    [34] 陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)及高分辨微动特征提取方法[J]. 雷达学报(中英文), 2024, 13(3): 539–553. doi: 10.12000/JR23142.

    CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multiband FMCW radar LSS-target detection dataset (LSS-FMCWR-1.0) and high-resolution micromotion feature extraction method[J]. Journal of Radars, 2024, 13(3): 539–553. doi: 10.12000/JR23142.
    [35] 陈小龙, 饶桂林, 关键, 等. 被动雷达低慢小探测数据集(LSS-PR-1.0)及多域特征提取和分析方法[J]. 雷达学报(中英文), 2025, 14(2): 249–268. doi: 10.12000/JR24145.

    CHEN Xiaolong, RAO Guilin, GUAN Jian, et al. Passive radar low slow small detection dataset (LSS-PR-1.0) and multi-domain feature extraction and analysis methods[J]. Journal of Radars, 2025, 14(2): 249–268. doi: 10.12000/JR24145.
    [36] 邓振华, 陈小龙, 薛伟, 等. 海空背景下低慢小目标泛探雷达多域多维特征建模与分析[J]. 信号处理, 2024, 40(5): 801–814. doi: 10.16798/j.issn.1003-0530.2024.05.001.

    DENG Zhenhua, CHEN Xiaolong, XUE Wei, et al. Multi-domain and multi-dimensional feature modeling and analysis of low, slow, and small targets via ubiquitous radar under sea and air background[J]. Journal of Signal Processing, 2024, 40(5): 801–814. doi: 10.16798/j.issn.1003-0530.2024.05.001.
    [37] LIU Huaiyuan, YANG Donghua, LIU Xianzhang, et al. TodyNet: Temporal dynamic graph neural network for multivariate time series classification[J]. Information Sciences, 2024, 677: 120914. doi: 10.1016/j.ins.2024.120914.
    [38] DUAN Ziheng, XU Haoyan, WANG Yueyang, et al. Multivariate time-series classification with hierarchical variational graph pooling[J]. Neural Networks, 2022, 154: 481–490. doi: 10.1016/j.neunet.2022.07.032.
    [39] YIN Yongqiang, ZHENG Xiangwei, HU Bin, et al. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM[J]. Applied Soft Computing, 2021, 100: 106954. doi: 10.1016/j.asoc.2020.106954.
    [40] FENG Lin, CHENG Cheng, ZHAO Mingyan, et al. EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5406–5417. doi: 10.1109/JBHI.2022.3198688.
  • 加载中
图(24) / 表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-17
  • 修回日期:  2026-01-27

目录

    /

    返回文章
    返回