Optimized Design Method for Multimodal Low-Coupling Orbital Angular Momentum Arrays for Radar Detection Applications
-
摘要: 携带轨道角动量( OAM)的涡旋电磁波能够满足现代雷达探测系统对高分辨率、高精度等的需求,而现有OAM波束的产生方法面临多模态纯度受限及阵元间互耦合严重等问题。为解决以上问题,该文首先基于均匀同心圆环阵列设计方法,设计并优化角锥喇叭天线单元,建立了多模态OAM阵列模型,通过双层金属地板设计方法抑制阵列中阵元间的互耦合效应,并对阵列构型进行优化,使其能够生成同指向高纯度的多模态OAM波束;在此基础上,使用遗传算法优化设计生成低旁瓣的多模态OAM波束。全波仿真表明,优化后阵列的有源反射系数低于–10 dB,阵元间互耦合得到显著抑制,所设计的阵列结构稳定,能够进行工程应用,并支持14种模态纯度超过0.92的同指向OAM波束和旁瓣低于–13 dB的OAM波束生成。最后,通过加工、测试与超分辨成像实验仿真验证了所设计阵列的性能。Abstract: Vortex electromagnetic waves carrying orbital angular momentum (OAM) can meet the requirements of modern radar detection systems for high resolution and precision. However, existing OAM beam generation methods suffer from limitations, such as insufficient multimodal purity and strong mutual coupling between array elements. To overcome these challenges, this paper designs and optimizes pyramidal horn antenna elements based on a uniform concentric circular array, thereby establishing a multimodal OAM array model. A double-layer metal ground plane structure is introduced to effectively suppress mutual coupling between array elements. Furthermore, the array configuration is optimized to generate high-purity, co-directional multimodal OAM beams. On this basis, a genetic algorithm is used to further optimize the design for generating multimodal OAM beams with low sidelobes. Full-wave simulations show that the optimized array achieves an active reflection coefficient below −10 dB, indicating substantially suppression of the mutual coupling between elements. The proposed array exhibits a stable structure suitable for engineering applications and supports the generation of 14 co-directional OAM beams with modal purity exceeding 0.92 and sidelobes below −13 dB. Finally, the performance of the designed array is validated through fabrication, testing, and super-resolution imaging experiments.
-
表 1 OAM阵列构型参数
Table 1. OAM array configuration parameters
UCA编号 UCA半径(mm) UCA单元数目 #1 26 6 #2 52 12 #3 81 18 #4 108 26 #5 134 32 #6 161 32 #7 190 44 表 2 优化后的阵列构型参数
Table 2. Optimized array configuration parameters
UCA编号 UCA半径(mm) UCA单元数目 #1 56 6 #2 93 12 #3 128 18 #4 162 26 #5 195 32 #6 228 26 #7 260 26 表 3 各模态涡旋波的远场仿真结果
Table 3. Far-field simulation results of each vortex wave mode
模态数 OAM张角 纯度 增益(dBi) HPBW 1 9.10° 0.996 15.66 9.10° 2 9.20° 0.995 16.89 6.10° 3 9.00° 0.992 17.55 5.00° 4 9.00° 0.996 18.11 4.20° 5 9.00° 0.996 18.69 3.80° 6 9.00° 0.996 17.46 3.40° 7 9.10° 0.994 16.71 3.10° 表 4 金属地板移动时的增益仿真结果
Table 4. Gain simulation results with moving metal ground plane
模态数 上移1mm增益(dBi) 当前位置增益(dBi) 下移1mm增益(dBi) 1 15.68 15.66 15.53 2 16.81 16.89 16.31 3 17.59 17.55 17.40 4 18.11 18.11 17.88 5 18.68 18.69 18.38 6 17.44 17.46 17.29 7 17.48 16.71 17.20 表 5 本文结果与其他OAM波束生成研究结果对比
Table 5. Comparison of results in this paper with other OAM beam generation studies
参考文献 类型 工作
频率
(GHz)可生成模态 模态纯度 增益
(dBi)工程应
用性能[13] 平面相
控阵10 1,2,3 50%~90%,随扫描角
度下降未提及 可集成 [14] UCA+偏馈抛物面反射器 10 ±1~±7 1模态>90%,逐渐减小,到7模态≈50% 根据抛
物面尺
寸改变需要精密机械支撑与相位调节 [15] 圆极化椭圆贴片UCA 6 l=-1 ≈80% ≈10 易集成 [16] UCA+
透镜25~28 ±1,±2 >90% >13 仿真与实验验证 [17] 圆极化缝隙贴片UCA 2.4 l=1 ≈80% ≈10 仿真与实验验证 本文 UCCA+双层地板结构 9.7~10.3 ±1~±7(共14种模态) >92%
(实测)>15 易集成,结构稳定、加工误差鲁棒 -
[1] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185. [2] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970. [3] HU Yiping, ZHENG Shilie, ZHANG Zhuofan, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047. doi: 10.1049/iet-map.2015.0839. [4] ZHENG Feng, CHEN Yijian, JI Siwei, et al. Research status and prospects of orbital angular momentum technology in wireless communication[J]. Progress in Electromagnetics Research, 2020, 168: 113–132. doi: 10.2528/PIER20091104. [5] XIONG Xusheng, LOU Hanqiong, and GE Xiaohu. Modeling and optimization of OAM-MIMO communication systems with unaligned antennas[J]. IEEE Transactions on Communications, 2022, 70(6): 3682–3694. doi: 10.1109/TCOMM.2022.3166541. [6] WANG Muyao, LYU Runyu, and ZHANG Hailin. Generation of OAM beams with constant beam radius[J]. IEEE Communications Letters, 2024, 28(12): 2899–2903. doi: 10.1109/LCOMM.2024.3489276. [7] 周宁宁, 朱士涛, 年毅恒, 等. 一种基于多模态OAM波束的目标特征智能识别方法[J]. 雷达学报, 2021, 10(5): 760–772. doi: 10.12000/JR21056.ZHOU Ningning, ZHU Shitao, NIAN Yiheng, et al. An intelligent target feature recognition method based on multi-mode OAM beams[J]. Journal of Radars, 2021, 10(5): 760–772. doi: 10.12000/JR21056. [8] ZHANG Chao, JIANG Xuefeng, and CHEN Dong. Signal-to-noise ratio improvement by vortex wave detection with a rotational antenna[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1020–1029. doi: 10.1109/TAP.2020.3016173. [9] TANG Bo, GUO Kunyi, WANG Jianping, et al. Resolution performance of the Orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975–2978. doi: 10.1109/LAWP.2017.2756094. [10] 陈鑫淼, 李海英, 吴涛, 等. 金属目标对贝塞尔涡旋波束的近场电磁散射特性[J]. 物理学报, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192.CHEN Xinmiao, LI Haiying, WU Tao, et al. Near-field electromagnetic scattering of Bessel vortex beam by metal target[J]. Acta Physica Sinica, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192. [11] ZHANG Chao, JIANG Xuefeng, and CHEN Dong. RCS promotion in orbital angular momentum imaging radar with rotational antenna[J]. IET Radar, Sonar & Navigation, 2019, 13(12): 2140–2144. doi: 10.1049/iet-rsn.2019.0100. [12] WANG He, LI Yongfeng, HAN Yajuan, et al. Vortex beam generated by circular-polarized metasurface reflector antenna[J]. Journal of Physics D: Applied Physics, 2019, 52(25): 255306. doi: 10.1088/1361-6463/ab1742. [13] 蒋基恒, 余世星, 寇娜, 等. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性[J]. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.2021111.JIANG Jiheng, YU Shixing, KOU Na, et al. Beam steering of orbital angular momentum vortex wave based on planar phased array[J]. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.2021111. [14] ZONG Xianzheng, ZHANG Hanfei, CHEN Zhengtian, et al. Research on multi-mode multiplexing OAM antenna system based on offset-fed beam bunching paraboloid[J]. Electromagnetics, 2021, 41(5): 367–379. doi: 10.1080/02726343.2021.1962607. [15] RAO M V, MONDAL D, MALIK J, et al. Series-feed UCA antenna for generating highly azimuthal symmetric OAM Beam for unmanned aerial vehicles[J]. AEU-International Journal of Electronics and Communications, 2023, 171: 154917. doi: 10.1016/j.aeue.2023.154917. [16] LIU Zhiqiang, REN Xue, LIAO Shaowei, et al. Millimeter-wave dual-mode low divergence angle OAM antennas with high mode purity in wide bandwidth[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(12): 9486–9491. doi: 10.1109/TAP.2024.3483318. [17] YU Wei, ZHOU Bin, XU Fangying, et al. The impact of asymmetric antenna element's radiation pattern and its solution analysis for UCA-based OAM communications[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4554–4568. doi: 10.1109/TVT.2024.3498005. [18] XU Shuo, XU Hexiu, WANG Yanzhao, et al. Circularly polarized antenna array with decoupled quad vortex beams[J]. Nanomaterials, 2022, 12(17): 3083. doi: 10.3390/nano12173083. [19] ZHANG Yu, WU Tong, ZHOU Yijiang, et al. Dual-frequency broadband metasurface for independently generating multiple vortex beams based on spin decoupling[J]. Optical Materials Express, 2025, 15(10): 2349–2361. doi: 10.1364/OME.571516. [20] YANG Ting, SHI Hongyin, GUO Jianwen, et al. Super-resolution performance studies for orbital-angular-momentum-based imaging radar[J]. International Journal of Remote Sensing, 2021, 42(21): 8185–8206. doi: 10.1080/01431161.2021.1975842. [21] WANG Yunlai, WANG Yanzhe, and GUO Zhongyi. OAM radar based fast super-resolution imaging[J]. Measurement, 2022, 189: 110600. doi: 10.1016/j.measurement.2021.110600. [22] WANG Siyuan, CHEN Yijun, QU Yi, et al. Vortex electromagnetic radar imaging and adaptive resource scheduling based on uniform concentric circular arrays[J]. IEEE Sensors Journal, 2024, 24(14): 22658–22671. doi: 10.1109/JSEN.2024.3405969. [23] ZHANG Kuang, YUAN Yueyi, ZHANG Dawei, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Optics Express, 2018, 26(2): 1351–1360. doi: 10.1364/OE.26.001351. [24] HENAULT S and ANTAR Y. Unifying the theory of mutual coupling compensation in antenna arrays[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 104–122. doi: 10.1109/MAP.2015.2414514. [25] CHEN Rui, LONG Wenxuan, GAO Yue, et al. Orbital angular momentum-based two-dimensional super-resolution targets imaging[C]. IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 1243–1246. doi: 10.1109/GlobalSIP.2018.8646368. [26] SHI Zijian, WAN Zhensong, ZHAN Ziyu, et al. Super-resolution orbital angular momentum holography[J]. Nature Communications, 2023, 14(1): 1869. doi: 10.1038/s41467-023-37594-7. -
作者中心
专家审稿
责编办公
编辑办公
下载: