面向雷达探测应用的多模态低耦合OAM阵列优化设计方法

齐鹏远 李蝶 朱士涛 李财品 熊文俊 张明 张安学

齐鹏远, 李蝶, 朱士涛, 等. 面向雷达探测应用的多模态低耦合OAM阵列优化设计方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25234
引用本文: 齐鹏远, 李蝶, 朱士涛, 等. 面向雷达探测应用的多模态低耦合OAM阵列优化设计方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25234
QI Pengyuan, LI Die, ZHU Shitao, et al. Optimized design method for multimodal low-coupling orbital angular momentum arrays for radar detection applications[J]. Journal of Radars, in press. doi: 10.12000/JR25234
Citation: QI Pengyuan, LI Die, ZHU Shitao, et al. Optimized design method for multimodal low-coupling orbital angular momentum arrays for radar detection applications[J]. Journal of Radars, in press. doi: 10.12000/JR25234

面向雷达探测应用的多模态低耦合OAM阵列优化设计方法

DOI: 10.12000/JR25234 CSTR: 32380.14.JR25234
基金项目: 国家重点研发计划(2022YFB3902400),国家自然科学基金(62471379, 62071371)
详细信息
    作者简介:

    齐鹏远,硕士生,主要研究方向为阵列天线设计等

    李 蝶,博士生,主要研究方向为阵列信号处理、微波关联成像等

    朱士涛,副研究员,主要研究方向为新型雷达信号处理方法、微波关联成像、超材料孔径天线等

    李财品,高级工程师,主要研究方向为星载合成孔径雷达成像、雷达系统设计等

    熊文俊,博士生,主要研究方向为阵列信号处理、微波关联成像等

    张 明,副教授,主要研究方向为阵列信号处理、数值优化算法等

    张安学,教授,主要研究方向为新型天线与分集技术、智能雷达信号处理、多天线通信系统与阵列信号处理等

    通讯作者:

    朱士涛 shitaozhu@xjtu.edu.cn

    责任主编:郭忠义 Corresponding Editor: GUO Zhongyi

  • 中图分类号: TN820

Optimized Design Method for Multimodal Low-Coupling Orbital Angular Momentum Arrays for Radar Detection Applications

Funds: The National Key Research and Development Program (2022YFB3902400), The National Natural Science Foundation of China (62471379, 62071371)
More Information
  • 摘要: 携带轨道角动量( OAM)的涡旋电磁波能够满足现代雷达探测系统对高分辨率、高精度等的需求,而现有OAM波束的产生方法面临多模态纯度受限及阵元间互耦合严重等问题。为解决以上问题,该文首先基于均匀同心圆环阵列设计方法,设计并优化角锥喇叭天线单元,建立了多模态OAM阵列模型,通过双层金属地板设计方法抑制阵列中阵元间的互耦合效应,并对阵列构型进行优化,使其能够生成同指向高纯度的多模态OAM波束;在此基础上,使用遗传算法优化设计生成低旁瓣的多模态OAM波束。全波仿真表明,优化后阵列的有源反射系数低于–10 dB,阵元间互耦合得到显著抑制,所设计的阵列结构稳定,能够进行工程应用,并支持14种模态纯度超过0.92的同指向OAM波束和旁瓣低于–13 dB的OAM波束生成。最后,通过加工、测试与超分辨成像实验仿真验证了所设计阵列的性能。

     

  • 图  1  均匀圆形阵列示意图

    Figure  1.  Uniform circular array schematic diagram

    图  2  天线单元间互耦合示意图

    Figure  2.  Schematic diagram of mutual coupling between antenna elements

    图  3  角锥喇叭天线的HFSS模型

    Figure  3.  HFSS model of the pyramidal horn antenna

    图  4  角锥喇叭天线的S11仿真结果

    Figure  4.  S11 simulation results of the pyramidal horn antenna

    图  5  角锥喇叭天线的y分量2D方向图

    Figure  5.  2D radiation pattern of the y-component for the pyramidal horn antenna

    图  6  角锥喇叭天线的z分量2D方向图

    Figure  6.  2D radiation pattern of the z-component for the pyramidal horn antenna

    图  7  中心阵元的HFSS模型

    Figure  7.  HFSS model of the central array element

    图  8  中心阵元的S11仿真曲线

    Figure  8.  S11 simulation curve of the central array element

    图  9  中心阵元的y分量2D方向图

    Figure  9.  2D radiation pattern of the y-component for the central array element

    图  10  中心阵元的z分量2D方向图

    Figure  10.  2D radiation pattern of the z-component for the central array element

    图  11  中心阵元的阵中增益优化结果

    Figure  11.  Optimized on-axis gain of the central array element

    图  12  具有双层金属地板结构的OAM阵列HFSS模型

    Figure  12.  HFSS model of the OAM array with a double-layer metal ground plane structure

    图  13  耦合抑制效果优化结果

    Figure  13.  Optimization results of coupling suppression performance

    图  14  单元的相邻单元互耦合系数

    Figure  14.  Mutual coupling coefficient between adjacent elements

    图  15  未加地板前各阵元有源反射系数分布图

    Figure  15.  Distribution of active reflection coefficients for all array elements (without ground plane)

    图  16  9.7 GHz各阵元有源反射系数分布图

    Figure  16.  Distribution of active reflection coefficients for all array elements at 9.7 GHz

    图  17  10.0 GHz各阵元有源反射系数分布图

    Figure  17.  Distribution of active reflection coefficients for all array elements at 10.0 GHz

    图  18  10.3 GHz各阵元有源反射系数分布图

    Figure  18.  Distribution of active reflection coefficients for all array elements at 10.3 GHz

    图  19  遗传算法收敛曲线

    Figure  19.  Convergence curve of the genetic algorithm

    图  20  抑制旁瓣下各模态远场方向图

    Figure  20.  Far-field patterns of each mode under side lobe suppression

    图  21  加工后的天线单元与天线阵列

    Figure  21.  Processed antenna element and antenna array

    图  22  喇叭天线测试结果

    Figure  22.  Horn antenna test results

    图  23  微波暗室测试环境

    Figure  23.  Microwave anechoic chamber test environment

    图  24  模态1的近场测试结果及远场变换结果

    Figure  24.  Test results of modal 1 near-field and far-field transformation results

    图  25  模态2的近场测试结果及远场变换结果

    Figure  25.  Test results of modal 2 near-field and far-field transformation results

    图  26  模态3的近场测试结果及远场变换结果

    Figure  26.  Test results of modal 3 near-field and far-field transformation results

    图  27  模态4的近场测试结果及远场变换结果

    Figure  27.  Test results of modal 4 near-field and far-field transformation results

    图  28  模态5的近场测试结果及远场变换结果

    Figure  28.  Test results of modal 5 near-field and far-field transformation results

    图  29  模态6的近场测试结果及远场变换结果

    Figure  29.  Test results of modal 6 near-field and far-field transformation results

    图  30  模态7的近场测试结果及远场变换结果

    Figure  30.  Test results of modal 7 near-field and far-field transformation results

    图  31  OAM模态纯度结果的仿真与测试对比图

    Figure  31.  Simulation vs. measurement comparison chart of OAM mode purity results

    图  32  多模态OAM波束同指向角度上的远场增益分布与相位分布

    Figure  32.  Far-field gain distribution and phase distribution of multi-mode OAM beams at co-pointing angles

    图  33  成像仿真探测目标示意图

    Figure  33.  Simulated imaging detection target schematic diagram

    图  34  两目标的超分辨成像结果

    Figure  34.  Super-resolution imaging results of dual targets

    表  1  OAM阵列构型参数

    Table  1.   OAM array configuration parameters

    UCA编号UCA半径(mm)UCA单元数目
    #1266
    #25212
    #38118
    #410826
    #513432
    #616132
    #719044
    下载: 导出CSV

    表  2  优化后的阵列构型参数

    Table  2.   Optimized array configuration parameters

    UCA编号UCA半径(mm)UCA单元数目
    #1566
    #29312
    #312818
    #416226
    #519532
    #622826
    #726026
    下载: 导出CSV

    表  3  各模态涡旋波的远场仿真结果

    Table  3.   Far-field simulation results of each vortex wave mode

    模态数OAM张角纯度增益(dBi)HPBW
    19.10°0.99615.669.10°
    29.20°0.99516.896.10°
    39.00°0.99217.555.00°
    49.00°0.99618.114.20°
    59.00°0.99618.693.80°
    69.00°0.99617.463.40°
    79.10°0.99416.713.10°
    下载: 导出CSV

    表  4  金属地板移动时的增益仿真结果

    Table  4.   Gain simulation results with moving metal ground plane

    模态数上移1mm增益(dBi)当前位置增益(dBi)下移1mm增益(dBi)
    115.6815.6615.53
    216.8116.8916.31
    317.5917.5517.40
    418.1118.1117.88
    518.6818.6918.38
    617.4417.4617.29
    717.4816.7117.20
    下载: 导出CSV

    表  5  本文结果与其他OAM波束生成研究结果对比

    Table  5.   Comparison of results in this paper with other OAM beam generation studies

    参考文献 类型 工作
    频率
    (GHz)
    可生成模态 模态纯度 增益
    (dBi)
    工程应
    用性能
    [13] 平面相
    控阵
    10 1,2,3 50%~90%,随扫描角
    度下降
    未提及 可集成
    [14] UCA+偏馈抛物面反射器 10 ±1~±7 1模态>90%,逐渐减小,到7模态≈50% 根据抛
    物面尺
    寸改变
    需要精密机械支撑与相位调节
    [15] 圆极化椭圆贴片UCA 6 l=-1 ≈80% ≈10 易集成
    [16] UCA+
    透镜
    25~28 ±1,±2 >90% >13 仿真与实验验证
    [17] 圆极化缝隙贴片UCA 2.4 l=1 ≈80% ≈10 仿真与实验验证
    本文 UCCA+双层地板结构 9.7~10.3 ±1~±7(共14种模态) >92%
    (实测)
    >15 易集成,结构稳定、加工误差鲁棒
    下载: 导出CSV
  • [1] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
    [2] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970.
    [3] HU Yiping, ZHENG Shilie, ZHANG Zhuofan, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047. doi: 10.1049/iet-map.2015.0839.
    [4] ZHENG Feng, CHEN Yijian, JI Siwei, et al. Research status and prospects of orbital angular momentum technology in wireless communication[J]. Progress in Electromagnetics Research, 2020, 168: 113–132. doi: 10.2528/PIER20091104.
    [5] XIONG Xusheng, LOU Hanqiong, and GE Xiaohu. Modeling and optimization of OAM-MIMO communication systems with unaligned antennas[J]. IEEE Transactions on Communications, 2022, 70(6): 3682–3694. doi: 10.1109/TCOMM.2022.3166541.
    [6] WANG Muyao, LYU Runyu, and ZHANG Hailin. Generation of OAM beams with constant beam radius[J]. IEEE Communications Letters, 2024, 28(12): 2899–2903. doi: 10.1109/LCOMM.2024.3489276.
    [7] 周宁宁, 朱士涛, 年毅恒, 等. 一种基于多模态OAM波束的目标特征智能识别方法[J]. 雷达学报, 2021, 10(5): 760–772. doi: 10.12000/JR21056.

    ZHOU Ningning, ZHU Shitao, NIAN Yiheng, et al. An intelligent target feature recognition method based on multi-mode OAM beams[J]. Journal of Radars, 2021, 10(5): 760–772. doi: 10.12000/JR21056.
    [8] ZHANG Chao, JIANG Xuefeng, and CHEN Dong. Signal-to-noise ratio improvement by vortex wave detection with a rotational antenna[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1020–1029. doi: 10.1109/TAP.2020.3016173.
    [9] TANG Bo, GUO Kunyi, WANG Jianping, et al. Resolution performance of the Orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975–2978. doi: 10.1109/LAWP.2017.2756094.
    [10] 陈鑫淼, 李海英, 吴涛, 等. 金属目标对贝塞尔涡旋波束的近场电磁散射特性[J]. 物理学报, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192.

    CHEN Xinmiao, LI Haiying, WU Tao, et al. Near-field electromagnetic scattering of Bessel vortex beam by metal target[J]. Acta Physica Sinica, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192.
    [11] ZHANG Chao, JIANG Xuefeng, and CHEN Dong. RCS promotion in orbital angular momentum imaging radar with rotational antenna[J]. IET Radar, Sonar & Navigation, 2019, 13(12): 2140–2144. doi: 10.1049/iet-rsn.2019.0100.
    [12] WANG He, LI Yongfeng, HAN Yajuan, et al. Vortex beam generated by circular-polarized metasurface reflector antenna[J]. Journal of Physics D: Applied Physics, 2019, 52(25): 255306. doi: 10.1088/1361-6463/ab1742.
    [13] 蒋基恒, 余世星, 寇娜, 等. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性[J]. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.2021111.

    JIANG Jiheng, YU Shixing, KOU Na, et al. Beam steering of orbital angular momentum vortex wave based on planar phased array[J]. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.2021111.
    [14] ZONG Xianzheng, ZHANG Hanfei, CHEN Zhengtian, et al. Research on multi-mode multiplexing OAM antenna system based on offset-fed beam bunching paraboloid[J]. Electromagnetics, 2021, 41(5): 367–379. doi: 10.1080/02726343.2021.1962607.
    [15] RAO M V, MONDAL D, MALIK J, et al. Series-feed UCA antenna for generating highly azimuthal symmetric OAM Beam for unmanned aerial vehicles[J]. AEU-International Journal of Electronics and Communications, 2023, 171: 154917. doi: 10.1016/j.aeue.2023.154917.
    [16] LIU Zhiqiang, REN Xue, LIAO Shaowei, et al. Millimeter-wave dual-mode low divergence angle OAM antennas with high mode purity in wide bandwidth[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(12): 9486–9491. doi: 10.1109/TAP.2024.3483318.
    [17] YU Wei, ZHOU Bin, XU Fangying, et al. The impact of asymmetric antenna element's radiation pattern and its solution analysis for UCA-based OAM communications[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4554–4568. doi: 10.1109/TVT.2024.3498005.
    [18] XU Shuo, XU Hexiu, WANG Yanzhao, et al. Circularly polarized antenna array with decoupled quad vortex beams[J]. Nanomaterials, 2022, 12(17): 3083. doi: 10.3390/nano12173083.
    [19] ZHANG Yu, WU Tong, ZHOU Yijiang, et al. Dual-frequency broadband metasurface for independently generating multiple vortex beams based on spin decoupling[J]. Optical Materials Express, 2025, 15(10): 2349–2361. doi: 10.1364/OME.571516.
    [20] YANG Ting, SHI Hongyin, GUO Jianwen, et al. Super-resolution performance studies for orbital-angular-momentum-based imaging radar[J]. International Journal of Remote Sensing, 2021, 42(21): 8185–8206. doi: 10.1080/01431161.2021.1975842.
    [21] WANG Yunlai, WANG Yanzhe, and GUO Zhongyi. OAM radar based fast super-resolution imaging[J]. Measurement, 2022, 189: 110600. doi: 10.1016/j.measurement.2021.110600.
    [22] WANG Siyuan, CHEN Yijun, QU Yi, et al. Vortex electromagnetic radar imaging and adaptive resource scheduling based on uniform concentric circular arrays[J]. IEEE Sensors Journal, 2024, 24(14): 22658–22671. doi: 10.1109/JSEN.2024.3405969.
    [23] ZHANG Kuang, YUAN Yueyi, ZHANG Dawei, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Optics Express, 2018, 26(2): 1351–1360. doi: 10.1364/OE.26.001351.
    [24] HENAULT S and ANTAR Y. Unifying the theory of mutual coupling compensation in antenna arrays[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 104–122. doi: 10.1109/MAP.2015.2414514.
    [25] CHEN Rui, LONG Wenxuan, GAO Yue, et al. Orbital angular momentum-based two-dimensional super-resolution targets imaging[C]. IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 1243–1246. doi: 10.1109/GlobalSIP.2018.8646368.
    [26] SHI Zijian, WAN Zhensong, ZHAN Ziyu, et al. Super-resolution orbital angular momentum holography[J]. Nature Communications, 2023, 14(1): 1869. doi: 10.1038/s41467-023-37594-7.
  • 加载中
图(34) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-07

目录

    /

    返回文章
    返回