基于多源信息跨域学习的SAR图像目标检测技术研究进展与展望

周正 赵凌君 何奇山 孙忠镇 计科峰 匡纲要

周正, 赵凌君, 何奇山, 等. 基于多源信息跨域学习的SAR图像目标检测技术研究进展与展望[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25205
引用本文: 周正, 赵凌君, 何奇山, 等. 基于多源信息跨域学习的SAR图像目标检测技术研究进展与展望[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25205
ZHOU Zheng, ZHAO Lingjun, HE Qishan, et al. Research progress and prospects of SAR image target detection based on multi-source information cross-domain learning[J]. Journal of Radars, in press. doi: 10.12000/JR25205
Citation: ZHOU Zheng, ZHAO Lingjun, HE Qishan, et al. Research progress and prospects of SAR image target detection based on multi-source information cross-domain learning[J]. Journal of Radars, in press. doi: 10.12000/JR25205

基于多源信息跨域学习的SAR图像目标检测技术研究进展与展望

DOI: 10.12000/JR25205 CSTR: 32380.14.JR25205
基金项目: 国家自然科学基金(62471475),湖南省自然科学基金(2024JJ4045),湖南省研究生科研创新项目(CX20250019),国防科技大学研究生科研创新项目(XJQY2025014)
详细信息
    作者简介:

    周 正,博士生,主要研究方向为SAR图像解译、跨域SAR图像目标检测与识别

    赵凌君,副教授,主要研究方向为遥感信息处理、SAR目标自动识别等

    何奇山,博士生,主要研究方向为SAR目标检测识别、深度学习

    孙忠镇,博士生,主要研究方向为空天遥感图像智能处理,SAR图像目标检测识别

    计科峰,博士,教授,博士生导师,主要研究方向为SAR目标电磁散射特性建模、特征提取、检测识别以及多源空天遥感图像智能处理与解译基础理论、核心关键技术以及系统集成与应用等

    匡纲要,博士,教授,博士生导师,主要研究方向为遥感图像智能解译、SAR图像目标检测与识别

    通讯作者:

    计科峰 jikefeng@nudt.edu.cn

    责任主编:张增辉 Corresponding Editor: ZHANG Zenghui

  • 中图分类号: TN957.51

Research Progress and Prospects of SAR Image Target Detection Based on Multi-source Information Cross-domain Learning

Funds: The National Natural Science Foundation of China (62471475), Hunan Provincial Natural Science Foundation of China (2024JJ4045), Postgraduate Scientific Research Innovation Project of Hunan Province (2022-ZZKY-JJ-10-02), Postgraduate Scientific Research Innovation Project of National University of Defense Technology (XJQY2025014)
More Information
  • 摘要: 深度学习虽已成为合成孔径雷达(SAR)图像目标检测领域主流方法,但其性能高度依赖于大规模标注数据集。在测试不同分布的SAR数据时,模型的检测性能会出现一定程度下降,难以直接迁移应用,且人工标注成本高昂。针对此瓶颈,学术界开始探索基于多源信息的跨域学习策略,通过整合不同来源(传感器)的光学遥感图像或异源SAR图像等先验信息,辅助检测模型实现跨域知识迁移。该文聚焦深度学习框架下的跨域学习技术,系统梳理该领域最新研究进展,分析梳理该领域的核心问题,从方法论层面分析现有技术的核心优势与适用场景,并基于技术演进规律提出未来发展方向,旨在为提升SAR图像目标检测的泛化能力提供理论支撑与方法论参考。

     

  • 图  1  某港口的高分辨率SAR图像与对应的光学遥感图像对比

    Figure  1.  Comparison between high-resolution SAR images and corresponding optical remote sensing images of a certain port

    图  2  不同雷达参数对检测模型(YOLOv5n)的影响

    Figure  2.  The influence of different radar parameters on the detection model (YOLOv5n)

    图  3  近年发表跨域SAR图像目标检测关键论文时间表

    Figure  3.  Timeline of key papers on cross-domain SAR image target detection published in recent years

    图  4  目标检测不同分类方法

    Figure  4.  Different classification methods for target detection

    图  5  域适应和域泛化的训练测试过程示意图

    Figure  5.  Schematic diagram of the training and testing process for domain adaptation and domain generalization

    图  6  不同成像条件下的SAR舰船数据集t-SNE分布

    Figure  6.  The t-SNE distribution map of SAR ship dataset under different imaging

    图  7  光学和SAR舰船数据集t-SNE分布

    Figure  7.  The t-SNE distribution map of optical and SAR ship datasets

    图  8  域特有性与不变性特征学习流程示意图

    Figure  8.  Schematic diagram of domain specific and invariant feature learning process

    图  9  伪标签生成流程示意图

    Figure  9.  Schematic diagram of pseudo label generation process

    图  10  图像风格转换流程示意图

    Figure  10.  Schematic diagram of image style conversion process

    图  11  特征对齐流程示意图

    Figure  11.  Schematic diagram of feature alignment process

    图  12  先验知识约束流程示意图

    Figure  12.  Schematic diagram of prior knowledge constraint process

    图  13  统计特征动态调整流程示意图

    Figure  13.  Schematic diagram of dynamic adjustment of statistical features process

    图  14  视觉基础大模型微调流程示意图

    Figure  14.  Schematic diagram of the fine-tuning process for large visual foundation models

    表  1  基于深度学习的非跨域和跨域学习方法对比

    Table  1.   Comparison of non/cross-domain learning methods based on deep learning

    方法 适用场景 优势 局限性 面临挑战
    非跨域学习 指训练与测试数据分布
    基本一致的情形
    数据准备和训练过程简单、
    模型容易优化
    需大量标注样本、模型训练成本高、
    泛化性差、易过拟合
    SAR标注数据稀缺、模型泛化
    能力不足、计算资源需求大
    跨域学习 指训练与测试数据分布存在
    差异的情形
    缓解数据稀缺问题、可利用
    多源信息、泛化能力强
    域差异建模复杂、知识迁移效率低、
    易引入噪声、方法设计难度高
    SAR图像数据获取难、域分布
    差异大、跨域知识迁移失效
    下载: 导出CSV

    表  2  7类跨域SAR图像目标检测方法对比

    Table  2.   Comparison of seven cross-domain SAR image target detection methods

    方法 核心思路 优势 局限性 适用场景
    域特有性与不变性特征学习 将特征空间分解为域特有与
    不变特征
    能有效建模域间差异
    与共性
    需要有效的特征分解算法,
    增加计算复杂度
    适用于域间成像差异但仍处于同一模态空间的场景;[SAR→SAR]
    伪标签生成 基于自训练生成伪标签,通过
    伪标签增强训练数据
    在标签稀缺的情况下
    可以提升性能
    伪标签质量难以控制,可能
    引入噪声,影响模型效果
    适用于标签稀缺或标注成本高的
    任务;[两者]
    图像风格转换 将源域与目标域图像风格转化为一致的风格,减少风格差异影响 能从输入层面对齐
    模态差异
    可能无法捕捉到目标域的
    真实特征,风格转换质量
    可能不稳定
    适用于源与目标域视觉风格差异较大的场景;[光学→SAR]
    特征对齐 对源域和目标域特征进行对齐,使其在共享空间中表现相似 与检测网络结合紧密,
    可端到端训练。
    对齐的准确性影响模型性能,且过度对齐可能损失判别信息 适用于特征差异较大或目标域数据变化较大的任务;[两者]
    先验知识约束 利用已有的先验知识(如物理特
    性或标签信息)引导模型学习
    能充分利用SAR成像
    物理特性
    需要有效的先验知识支持,
    依赖领域专业知识
    适用于典型SAR目标(如舰船、
    车辆)检测,以及具有明确成像
    规律的场景;[两者]
    统计特征动态调整 通过调整统计参数生成
    不同的源域样本
    方法简单,易于与
    现有模型结合
    仅能对齐低阶统计特征,
    增加训练成本
    适用于模拟复杂未知环境或需要处理多个域数据的任务[SAR→SAR]
    视觉基础大模型微调 利用预训练大模型学习源域
    知识加速目标域学习
    简单直接,性能提升明显 易过拟合目标域,训练成本高 适用于大规模源域数据预训练任务;[光学→SAR]
    注:“适用场景”中使用[SAR→SAR]、[光学→SAR]或[两者]说明每类方法更适用于哪种情况.
    下载: 导出CSV

    表  3  2021年以来在相同跨域数据集上实验的论文(2篇以上)统计

    Table  3.   Statistics of two or more papers experimented on the same cross-domain dataset in recent years

    任务 数据 类别 文献
    SAR→SAR SSDD$\leftrightarrow $Gaofen-3 舰船 [17,43,45,58,71]
    miniSAR$\leftrightarrow $FARADSAR 车辆 [16,52,53,56]
    光学→SAR LEVIR→SSDD 舰船 [67,72,75]
    HRRSD→SSDD [44,46,68,70,72]
    LEVIR→SAR-Ship-Dataset [67,72,75]
    DIOR→SSDD [55,57,60,6567,70,80]
    HRSC2016→SSDD [47,50,75,84]
    HRSC2016→HRSID [47,50,69,84]
    Toronto→MiniSAR 车辆 [12,48,78,79]
    Toronto→FARADSAR [12,78,83]
    下载: 导出CSV

    表  4  3种车辆检测数据集的成像参数

    Table  4.   Imaging parameters of three vehicle detection datasets

    成像参数 Toronto miniSAR FARADSAR
    传感器 光学 机载SAR 星载SAR
    波段 - Ku Ka、X
    带宽(GHz) - 3 3、5
    时间(年) 2016 2005 2015
    场景 高尔夫球场、直升机场、棒球场等 密集城市建筑 晴天密集的城市建筑
    位置 克特兰空军基地 新墨西哥大学 加拿大多伦多市
    俯仰角度(°) - 26~29 26~34
    入射角度(°) - 61~64 56~61
    分辨率(m) 0.15 0.10 0.10
    下载: 导出CSV

    表  5  典型方法在Toronto到miniSAR和FARADSAR上跨域检测性能对比(%)

    Table  5.   Comparison of cross-domain detection performance of typical methods on Toronto to miniSAR and FARADSAR (%)

    方法Toronto→miniSARToronto→FARADSAR
    PRF1-scorePRF1-score
    Gaussian-CFAR35.8780.4849.6228.1346.7135.12
    Faster R-CNN[31]70.9790.3679.3974.8292.1982.60
    文献[48](无监督)77.6078.0577.82---
    文献[79](少样本)80.4973.4776.82---
    文献[12] (无监督)80.1687.8083.8178.8271.4374.95
    文献[78](半监督)81.6991.8785.9281.8492.9186.81
    文献[79] (少样本)84.5693.5088.76---
    下载: 导出CSV

    表  6  2种星载SAR舰船检测数据集的成像参数

    Table  6.   Imaging parameters of spaceborne SAR for two types of ship detection datasets

    成像参数 Gaofen-3数据 SSDD
    卫星 Gaofen-3 Sentinel-1 Radarsat-2 TerraSAR-X
    波段 C C C X
    带宽(MHz) 240 100 100 150
    轨道高度(km) 755 693 798 514
    入射角度(°) 10~60 10~60 20~45 20~55
    俯仰角扫描角度(°) ±20 ±20 ±11 ±25
    成像范围(km) 10~650 20~400 20~50 5~100
    分辨率(m) 0.5~100 5~20 1~100 1~16
    下载: 导出CSV

    表  7  典型方法在Gaofen-3和SSDD上跨域检测性能对比(%)

    Table  7.   Comparison of cross-domain detection performance of typical methods on Gaofen-3 and SSDD (%)

    方法 SSDD→Gaofen-3 Gaofen-3→SSDD
    P R mAP P R mAP
    Faster-RCNN[31] 57.0 71.0 57.9 62.5 77.8 67.0
    文献[71](无监督) 69.8 79.9 68.4 74.6 82.9 78.1
    文献[17](少样本) 72.3 74.6 76.5 75.4 77.0 78.6
    文献[43] (无监督) 73.7 81.9 74.4 78.4 86.3 81.5
    文献[58](自监督) 74.1 82.8 75.8 78.9 87.0 82.6
    文献[45] (无监督) 74.8 83.3 77.0 79.8 86.3 83.6
    下载: 导出CSV
  • [1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
    [2] 徐丰, 金亚秋. 从物理智能到微波视觉[J]. 科技导报, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004.

    XU Feng and JIN Yaqiu. From the emergence of intelligent science to the research of microwave vision[J]. Science & Technology Review, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004.
    [3] 江碧涛. 我国空间对地观测技术的发展与展望[J]. 测绘学报, 2022, 51(7): 1153–1159. doi: 10.11947/j.AGCS.2022.20220199.

    JIANG Bitao. The development and prospect of China's space earth observation technology[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1153–1159. doi: 10.11947/j.AGCS.2022.20220199.
    [4] 关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114.

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
    [5] TANG Gang, ZHUGE Yichao, CLARAMUNT C, et al. N-YOLO: A SAR ship detection using noise-classifying and complete-target extraction[J]. Remote Sensing, 2021, 13(5): 871. doi: 10.3390/rs13050871.
    [6] PELICH R, CHINI M, HOSTACHE R, et al. Large-scale automatic vessel monitoring based on dual-polarization Sentinel-1 and AIS data[J]. Remote Sensing, 2019, 11(9): 1078. doi: 10.3390/rs11091078.
    [7] 赵琰, 赵凌君, 匡纲要. 基于注意力机制特征融合网络的SAR图像飞机目标快速检测[J]. 电子学报, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.

    ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Attention feature fusion network for rapid aircraft detection in SAR images[J]. Acta Electronica Sinica, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
    [8] LI Weijie, YANG Wei, HOU Yuenan, et al. SARATR-X: Toward building a foundation model for SAR target recognition[J]. IEEE Transactions on Image Processing, 2025, 34: 869–884. doi: 10.1109/TIP.2025.3531988.
    [9] ZHOU Jie, LIU Yongxiang, PENG Bowen, et al. MaDiNet: Mamba diffusion network for SAR target detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(11): 10787–10800. doi: 10.1109/TCSVT.2025.3574657.
    [10] FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626.
    [11] FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069.
    [12] SHI Yu, LI Yi, DU Lan, et al. Unsupervised domain adaptative SAR target detection based on feature decomposition and uncertainty-guided self-training[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 20265–20283. doi: 10.1109/JSTARS.2024.3486922.
    [13] ZHOU Zheng, ZHAO Lingjun, JI Kefeng, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5216318. doi: 10.1109/TGRS.2024.3421512.
    [14] HUANG Hailiang, GUO Jingchao, LIN Huangxing, et al. Domain adaptive oriented object detection from optical to SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5200314. doi: 10.1109/TGRS.2024.3515161.
    [15] YUAN Yuxuan, TANG Luyao, XU Ying, et al. Filling and disentanglement: Toward low- and high-order parallel single-domain generalization for SAR ship detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 3668–3682. doi: 10.1109/TAES.2024.3489572.
    [16] ZHANG Xianghui, ZHANG Siqian, SUN Zhongzhen, et al. Cross-sensor SAR image target detection based on dynamic feature discrimination and center-aware calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5209417. doi: 10.1109/TGRS.2025.3559618.
    [17] ZHAO Siyuan, KANG Yong, YUAN Hang, et al. FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image[J]. Science of Remote Sensing, 2025, 11: 100202. doi: 10.1016/j.srs.2025.100202.
    [18] PATEL V M, GOPALAN R, LI Ruonan, et al. Visual domain adaptation: A survey of recent advances[J]. IEEE Signal Processing Magazine, 2015, 32(3): 53–69. doi: 10.1109/MSP.2014.2347059.
    [19] WANG Mei and DENG Weihong. Deep visual domain adaptation: A survey[J]. Neurocomputing, 2018, 312: 135–153. doi: 10.1016/j.neucom.2018.05.083.
    [20] ZHUANG Fuzhen, QI Zhiyuan, DUAN Keyu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43–76. doi: 10.1109/JPROC.2020.3004555.
    [21] TOLDO M, MARACANI A, MICHIELI U, et al. Unsupervised domain adaptation in semantic segmentation: A review[J]. Technologies, 2020, 8(2): 35. doi: 10.3390/technologies8020035.
    [22] ZHAO Sicheng, YUE Xiangyu, ZHANG Shanghang, et al. A review of single-source deep unsupervised visual domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 473–493. doi: 10.1109/TNNLS.2020.3028503.
    [23] OZA P, SINDAGI V A, VS V, et al. Unsupervised domain adaptation of object detectors: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(6): 4018–4040. doi: 10.1109/TPAMI.2022.3217046.
    [24] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [25] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision–ECCV 2016, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [26] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826.
    [27] SUN Zhongzhen, LENG Xiangguang, LEI Yu, et al. BiFA-YOLO: A novel YOLO-based method for arbitrary-oriented ship detection in high-resolution SAR images[J]. Remote Sensing, 2021, 13(21): 4209. doi: 10.3390/rs13214209.
    [28] ZHOU Zheng, CHEN Jie, HUANG Zhixiang, et al. HRLE-SARDet: A lightweight SAR target detection algorithm based on hybrid representation learning enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203922. doi: 10.1109/TGRS.2023.3251694.
    [29] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. The 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    [30] GIRSHICK R. Fast R-CNN[C]. The 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    [31] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [32] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. The 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
    [33] LIN Zhao, JI Kefeng, LENG Xiangguang, et al. Squeeze and excitation rank faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(5): 751–755. doi: 10.1109/LGRS.2018.2882551.
    [34] JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376.
    [35] CHEN Shiqi, ZHAN Ronghui, and ZHANG Jun. Robust single stage detector based on two-stage regression for SAR ship detection[C]. The 2nd International Conference on Innovation in Artificial Intelligence, Shanghai, China, 2018: 169–174. doi: 10.1145/3194206.3194223.
    [36] WEI Shunjun, SU Hao, MING Jing, et al. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet[J]. Remote Sensing, 2020, 12(1): 167. doi: 10.3390/rs12010167.
    [37] CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988.
    [38] ZHAO Yan, ZHAO Lingjun, XIONG Boli, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738–2756. doi: 10.1109/JSTARS.2020.2997081.
    [39] WANG Shiyu, CAI Zhanchuan, and YUAN Jieyu. Automatic SAR ship detection based on multifeature fusion network in spatial and frequency domains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4102111. doi: 10.1109/TGRS.2023.3267495.
    [40] PAN Dece, GAO Xin, DAI Wei, et al. SRT-Net: Scattering region topology network for oriented ship detection in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5202318. doi: 10.1109/TGRS.2024.3351366.
    [41] ZHANG Chongqi, DENG Yao, CHONG Mingzhe, et al. Entropy-based re-sampling method on SAR class imbalance target detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 209: 432–447. doi: 10.1016/j.isprsjprs.2024.02.019.
    [42] SHI Yu, DU Lan, GUO Yuchen, et al. Unsupervised domain adaptation based on progressive transfer for ship detection: From optical to SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230317. doi: 10.1109/TGRS.2022.3185298.
    [43] ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A feature decomposition-based method for automatic ship detection crossing different satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234015. doi: 10.1109/TGRS.2022.3201628.
    [44] XU Chujie, ZHENG Xiangtao, and LU Xiaoqiang. Multi-level alignment network for cross-domain ship detection[J]. Remote Sensing, 2022, 14(10): 2389. doi: 10.3390/rs14102389.
    [45] ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A domain specific knowledge extraction transformer method for multisource satellite-borne SAR images ship detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 16–29. doi: 10.1016/j.isprsjprs.2023.02.011.
    [46] YUAN Yuxuan, RAO Zhijie, LIN Chuyang, et al. Adaptive ship detection from optical to SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3508205. doi: 10.1109/LGRS.2023.3317321.
    [47] HE Jiayue, SU Nan, XU Congan, et al. A cross-modality feature transfer method for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5213615. doi: 10.1109/TGRS.2023.3300536.
    [48] SHI Yu, DU Lan, GUO Yuchen, et al. Optical knowledge assisted unsupervised cross-domain SAR target detection[J]. IET Conference Proceedings, 2024, 2023(47): 1474–1480. doi: 10.1049/icp.2024.1303.
    [49] ZHANG Ruixiang, WANG Yuxuan, LI Haoyuan, et al. Decoupled multi-teacher: Cross-modal learning enhanced object detection in SAR imagery[C]. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 7858–7862. doi: 10.1109/IGARSS53475.2024.10641529.
    [50] 何佳月, 宿南, 徐从安, 等. 从光学到SAR: 基于多级跨模态对齐的SAR图像舰船检测算法[J]. 遥感学报, 2024, 28(7): 1789–1801. doi: 10.11834/jrs.20243249.

    HE Jiayue, SU Nan, XU Congan, et al. From optical to SAR: A SAR ship detection algorithm based on multi-level cross-modality alignment[J]. National Remote Sensing Bulletin, 2024, 28(7): 1789–1801. doi: 10.11834/jrs.20243249.
    [51] ZHAO Xiaolin, ZHAO Siyuan, LUO Ying, et al. Generalizing SAR object detection: A unified framework for cross-source scenarios[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4009105. doi: 10.1109/LGRS.2025.3575173.
    [52] SHI Yu, DU Lan, and GUO Yuchen. Unsupervised domain adaptation for SAR target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6372–6385. doi: 10.1109/JSTARS.2021.3089238.
    [53] SHI Yu, DU Lan, GUO Yuchen, et al. Cross sensor transfer learning for unsupervised SAR target detection[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 2082–2086. doi: 10.1109/Radar53847.2021.10028188.
    [54] CHEN Shiqi, ZHAN Ronghui, WANG Wei, et al. Domain adaptation for semi-supervised ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4507405. doi: 10.1109/LGRS.2022.3171789.
    [55] ZHANG Tingting, LOU Xin, WANG Han, et al. Context-preserving region-based contrastive learning framework for ship detection in SAR[J]. Journal of Signal Processing Systems, 2023, 95(1): 3–12. doi: 10.1007/s11265-022-01799-8.
    [56] ZOU Bin, QIN Jiang, and ZHANG Lamei. Cross-scene target detection based on feature adaptation and uncertainty-aware pseudo-label learning for high resolution SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 200: 173–190. doi: 10.1016/j.isprsjprs.2023.05.009.
    [57] ZHENG Xiangtao, CUI Haowen, XU Chujie, et al. Dual teacher: A semisupervised cotraining framework for cross-domain ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5613312. doi: 10.1109/TGRS.2023.3287863.
    [58] ZHANG Xin and ZHAO Siyuan. A domain adaptation detector for heterogenous SAR image object detection[J]. IET Conference Proceedings, 2024, 2023(47): 3215–3218. doi: 10.1049/icp.2024.1613.
    [59] CHEN Xi, WANG Zhirui, WANG Wenhao, et al. CroMoDa: Unsupervised oriented SAR ship detection via cross-modality distribution alignment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11899–11914. doi: 10.1109/JSTARS.2024.3420901.
    [60] LOU Xin and WANG Han. Object detection in SAR via generative knowledge transfer[C]. 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), Gold Coast, Australia, 2021: 1–6. doi: 10.1109/MLSP52302.2021.9596254.
    [61] PU Xinyang, JIA Hecheng, XIN Yu, et al. Ship detection in low-quality SAR images via an unsupervised domain adaption method[J]. Remote Sensing, 2023, 15(13): 3326. doi: 10.3390/rs15133326.
    [62] PU Xinyang, JIA Hecheng, and XU Feng. Cross-domain SAR ship detection in strong interference environment based on image-to-image translation[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 1798–1801. doi: 10.1109/IGARSS52108.2023.10282746.
    [63] YU Wenbo, WANG Zijian, LI Jiamu, et al. Unsupervised aircraft detection in SAR images with image-level domain adaption from optical images[C]. The 3rd International Conference on Computer Vision and Pattern Analysis (ICCPA 2023), Hangzhou, China, 2023. doi: 10.1117/12.2684516.
    [64] YU Wenbo, LI Jiamu, WANG Zijian, et al. Boosting SAR aircraft detection performance with multi-stage domain adaptation training[J]. Remote Sensing, 2023, 15(18): 4614. doi: 10.3390/rs15184614.
    [65] YANG Yanrui, CHEN Jie, SUN Long, et al. Unsupervised domain-adaptive SAR ship detection based on cross-domain feature interaction and data contribution balance[J]. Remote Sensing, 2024, 16(2): 420. doi: 10.3390/rs16020420.
    [66] 娄欣, 王晗, 卢昊, 等. 生成式知识迁移的SAR舰船检测[J]. 遥感学报, 2024, 28(2): 470–480. doi: 10.11834/jrs.20211354.

    LOU Xin, WANG Han, LU Hao, et al. SAR ship detection through generative knowledge transfer[J]. National Remote Sensing Bulletin, 2024, 28(2): 470–480. doi: 10.11834/jrs.20211354.
    [67] WU Baolong, WANG Haonan, ZHANG Cunle, et al. Optical-to-SAR translation based on CDA-GAN for high-quality training sample generation for ship detection in SAR amplitude images[J]. Remote Sensing, 2024, 16(16): 3001. doi: 10.3390/rs16163001.
    [68] 陈亮, 李健昊, 何成, 等. 多域特征引导的无监督SAR图像舰船检测方法[J]. 上海航天(中英文), 2024, 41(3): 121–129. doi: 10.19328/j.cnki.2096-8655.2024.03.013.

    CHEN Liang, LI Jianhao, HE Cheng, et al. A multi-domain feature-guided method for unsupervised ship detection in SAR images[J]. Aerospace Shanghai (Chinese & English), 2024, 41(3): 121–129. doi: 10.19328/j.cnki.2096-8655.2024.03.013.
    [69] LUO Cheng, ZHANG Yueting, GUO Jiayi, et al. SAR-CDSS: A semi-supervised cross-domain object detection from optical to SAR domain[J]. Remote Sensing, 2024, 16(6): 940. doi: 10.3390/rs16060940.
    [70] ZHU Ya’nan, AI Jiaqiu, XUE Weibao, et al. Cross-modal ship detection from optical to SAR images based on pixel- and feature-level progressive transfer[J]. IEEE Sensors Journal, 2025, 25(8): 13344–13356. doi: 10.1109/JSEN.2025.3543520.
    [71] ZHAO Siyuan, ZHANG Zenghui, GUO Weiwei, et al. An automatic ship detection method adapting to different satellites SAR images with feature alignment and compensation loss[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225217. doi: 10.1109/TGRS.2022.3160727.
    [72] ZHANG Jun, LI Simin, DONG Yongfeng, et al. Hierarchical similarity alignment for domain adaptive ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240611. doi: 10.1109/TGRS.2022.3227626.
    [73] 宋玉成, 李景润, 田甜, 等. 跨模态域自适应SAR图像舰船检测与识别[J]. 华中科技大学学报: 自然科学版, 2022, 50(11): 107–113. doi: 10.13245/j.hust.221113.

    SONG Yucheng, LI Jingrun, TIAN Tian, et al. Ship detection and recognition in SAR images with cross-modality domain adaption[J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2022, 50(11): 107–113. doi: 10.13245/j.hust.221113.
    [74] JEONG S, KIM Y, KIM S, et al. Enriching SAR ship detection via multistage domain alignment[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4018905. doi: 10.1109/LGRS.2021.3115498.
    [75] PAN Bin, XU Zhehao, SHI Tianyang, et al. An imbalanced discriminant alignment approach for domain adaptive SAR ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5108111. doi: 10.1109/TGRS.2023.3303507.
    [76] LIU Shuang, LI Dong, WAN Jun, et al. Source-assisted hierarchical semantic calibration method for ship detection across different satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5215221. doi: 10.1109/TGRS.2024.3419025.
    [77] HU Kaiou, WAN Hongjie, and MA Fei. Cross-domain SAR detection method based on salient object alignment[J]. IET Conference Proceedings, 2024, 2023(47): 3347–3351. doi: 10.1049/icp.2024.1638.
    [78] LIAO Leiyao, DU Lan, and GUO Yuchen. Semi-supervised SAR target detection based on an improved faster R-CNN[J]. Remote Sensing, 2021, 14(1): 143. doi: 10.3390/rs14010143.
    [79] GUO Yuchen, DU Lan, and LYU Guoxin. SAR target detection based on domain adaptive faster R-CNN with small training data size[J]. Remote Sensing, 2021, 13(21): 4202. doi: 10.3390/rs13214202.
    [80] WANG Xu, ZHOU Huaji, CHEN Zheng, et al. Few-shot SAR ship image detection using two-stage cross-domain transfer learning[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2195–2198. doi: 10.1109/IGARSS46834.2022.9883172.
    [81] QIN Jiang, ZOU Bin, ZHANG Lamei, et al. Domain adaptive target detection with optimal transportation for different satellite SAR images[C]. EUSAR 2024; 15th European Conference on Synthetic Aperture Radar, Munich, Germany, 2024: 498–502. (查阅网上资料,未找到DOI信息,请确认).
    [82] CHAN Haopeng, QIU Xiaolan, GAO Xin, et al. A complex background SAR ship target detection method based on fusion tensor and cross-domain adversarial learning[J]. Remote Sensing, 2024, 16(18): 3492. doi: 10.3390/rs16183492.
    [83] LIAO Leiyao. Semi-supervised SAR target detection with cross-domain transfer learning based on YOLOv5[C]. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 7401–7404. doi: 10.1109/IGARSS53475.2024.10641642.
    [84] DONG Jun, FENG Jiewen, and TANG Xiaoyu. OptiSAR-Net: A cross-domain ship detection method for multisource remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4709311. doi: 10.1109/TGRS.2024.3502447.
    [85] HU Kaiou, WAN Hongjie, MA Fei, et al. Cross-domain SAR object detection by efficiently fine-tuning SAM[C]. 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 2024: 1–7. doi: 10.1109/PIERS62282.2024.10618373.
    [86] ZHANG Chaochen, CHEN Jie, HUANG Zhongling, et al. SAR image target segmentation guided by the scattering mechanism-based visual foundation model[J]. Remote Sensing, 2025, 17(7): 1209. doi: 10.3390/rs17071209.
    [87] ZOU Zhengxia and SHI Zhenwei. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1100–1111. doi: 10.1109/TIP.2017.2773199.
    [88] ZHANG Yuanlin, YUAN Yuan, FENG Yachuang, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535–5548. doi: 10.1109/TGRS.2019.2900302.
    [89] CHEN Ziyi, WANG Cheng, LUO Huan, et al. Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2296–2309. doi: 10.1109/TITS.2016.2517826.
    [90] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
    [91] LIU Zikun, YUAN Liu, WENG Lubin, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]. The 6th International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 2017: 324–331. doi: 10.5220/0006120603240331.
    [92] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418.
    [93] ZHANG Zhengning, ZHANG Lin, WANG Yue, et al. ShipRSImageNet: A large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458–8472. doi: 10.1109/JSTARS.2021.3104230.
    [94] SHERMEYER J, HOGAN D, BROWN J, et al. SpaceNet 6: Multi-sensor all weather mapping dataset[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 768–777. doi: 10.1109/CVPRW50498.2020.00106.
    [95] SHIN C, KIM S, and KIM Y. From planetscope to worldview: Micro-satellite image super-resolution with optimal transport distance[C]. The 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2020: 898–902. doi: 10.1109/ICIP40778.2020.9190810.
    [96] INVERSION, FAUDI J, and MARTIN. Airbus ship detection challenge[EB/OL]. https://www.kaggle.com/c/airbus-ship-detection, 2018.(查阅网上资料,不确定标黄作者是否正确,请确认).
    [97] ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690.
    [98] WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861.
    [99] SANDIA mini SAR complex imagery[EB/OL]. http://www.sandia.gov/radar/complex-data/index.Html, 2005. Accessed: Apr. 15, 2021. (查阅网上资料,未找到本条文献信息,请确认).
    [100] FARADSAR public release data[EB/OL]. 2015. https://www.sandia.gov/radar/complex_data/FARAD_KA_BAND.zip. (查阅网上资料,未找到本条文献信息,请确认).
    [101] LEI Songlin, LU Dongdong, QIU Xiaolan, et al. SRSDD-v1.0: A high-resolution SAR rotation ship detection dataset[J]. Remote Sensing, 2021, 13(24): 5104. doi: 10.3390/rs13245104.
    [102] 孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097.

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097.
    [103] WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765.
    [104] 陈杰, 黄志祥, 夏润繁, 等. 大规模多类SAR目标检测数据集-1.0[J/OL]. 雷达学报, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.

    CHEN Jie, HUANG Zhixiang, XIA Runfan, et al. Large-scale multi-class SAR image target detection dataset-1.0[J/OL]. Journal of Radars, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
    [105] 徐从安, 苏航, 李健伟, 等. RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11(4): 581–599. doi: 10.12000/JR22007.

    XU Congan, SU Hang, LI Jianwei, et al. RSDD-SAR: Rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11(4): 581–599. doi: 10.12000/JR22007.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-16

目录

    /

    返回文章
    返回