粗糙面电磁散射建模与嫦娥七号SAR月球极化定标场选取及分析

宋佳乐 柳钮滔 金亚秋 陆萍萍 王宇

宋佳乐, 柳钮滔, 金亚秋, 等. 粗糙面电磁散射建模与嫦娥七号SAR月球极化定标场选取及分析[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25194
引用本文: 宋佳乐, 柳钮滔, 金亚秋, 等. 粗糙面电磁散射建模与嫦娥七号SAR月球极化定标场选取及分析[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25194
SONG Jiale, LIU Niutao, JIN Yaqiu, et al. Electromagnetic scattering modeling of rough surfaces and selection of chang’e-7 SAR polarimetric lunar calibration fields[J]. Journal of Radars, in press. doi: 10.12000/JR25194
Citation: SONG Jiale, LIU Niutao, JIN Yaqiu, et al. Electromagnetic scattering modeling of rough surfaces and selection of chang’e-7 SAR polarimetric lunar calibration fields[J]. Journal of Radars, in press. doi: 10.12000/JR25194

粗糙面电磁散射建模与嫦娥七号SAR月球极化定标场选取及分析

DOI: 10.12000/JR25194 CSTR: 32380.14.JR25194
基金项目: 国家自然科学基金(62495032, 62201154, 62495035),上海市晨光计划
详细信息
    作者简介:

    宋佳乐,硕士生,主要研究方向为月球粗糙面电磁散射建模和SAR极化分解

    柳钮滔,博士,副研究员,主要研究方向为行星微波遥感、复杂媒质电磁散射模拟和空间电磁信息解译

    金亚秋,博士,教授,中国科学院院士,主要研究方向为复杂自然环境与目标电磁散射辐射传输、空间微波遥感和计算电磁学

    陆萍萍,博士,研究员,博士生导师,主要研究方向为微波遥感成像技术、遥感图像智能解译和人工智能应用

    王 宇,博士,研究员,博士生导师,主要研究方向为星载成像雷达系统与信号处理

    通讯作者:

    柳钮滔 ntliu@fudan.edu.cn

    责任主编:丁大志 Corresponding Editor: DING Dazhi

  • 中图分类号: TN959.74

Electromagnetic Scattering Modeling of Rough Surfaces and Selection of Chang’e-7 SAR Polarimetric Lunar Calibration Fields

Funds: The National Natural Science Foundation of China (62495032, 62201154, 62495035), The Chenguang Program of Shanghai
More Information
  • 摘要: 嫦娥七号将搭载全极化合成孔径雷达,对月球极区地形与物质特性开展探测。极化合成孔径雷达要求极化定标,而传统地面定标方法在月球探测任务中难以应用,需要发展新的月面极化相对定标方法。针对月表相对定标问题,该文采用垂直观测,分析同极化比$ {\sigma _{{\text{HH}}}} $/$ {\sigma _{{\text{VV}}}} $,HH和VV相位差与斜坡间关系,提出参数v衡量极化旋转角分布均匀性并用于筛选月球定标场。仿真实验表明,极化旋转角越均匀,极化比分布越趋于1,相位差分布越趋近于0°。该文结合粗糙面电磁散射回波和月船二号实测数据,建立统计模型约束下的定标所需最小观测次数估算方法,为月球极化SAR系统的相对定标提供了理论依据和技术路径。

     

  • 图  1  定标场筛选与分析流程图

    Figure  1.  Flowchart of calibration site selection and analysis

    图  2  月球高分辨率DTM数据[15]

    Figure  2.  High-resolution Lunar DTM data [15]

    图  3  选区相关函数分析图

    Figure  3.  Correlation function analysis of the selected regions

    图  4  全月区域坡度角分布图

    Figure  4.  Global lunar slope-angle map

    图  5  全月区域的参数v分布图

    Figure  5.  Global distribution of parameter v

    图  6  不同地貌DEM分布图

    Figure  6.  DEM distribution of different surface landforms

    图  7  基于参数v阈值的潜在定标场分布图

    Figure  7.  Distribution map of potential calibration sites based on the v-parameter threshold

    图  8  筛选区域角度分布图

    Figure  8.  PDF of angle in the selected region

    图  9  极化散射回波对比图

    Figure  9.  Comparison of simulated polarimetric backscattering echoes

    图  10  不同波段下的介电常数分析图

    Figure  10.  Comparison of simulated polarimetric backscattering echoes

    图  11  小尺度粗糙影响仿真数据示意图

    Figure  11.  Illustration of the effects of small-scale roughness

    图  12  不同参数v区域的数据分析示意图

    Figure  12.  Data analysis for regions with different parameter v

    图  13  选区的极化回波统计分布

    Figure  13.  Statistical distribution of polarized backscatter in selected region

    表  1  随机粗糙面参数设置

    Table  1.   Parameters of the randomly generated rough surface model

    参数 数值
    频率 1.25 GHz
    面片个数 250×250×2
    面片尺寸 0.005 m
    均方根高度s 0.025 m
    相关长度L 0.185 m
    调制波长$ {\lambda _m} $ 0.572 m
    介电常数$ \epsilon $[27] 3.04
    下载: 导出CSV
  • [1] LEE J S, GRUNES M R, and DE GRANDI G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363–2373. doi: 10.1109/36.789635.
    [2] CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127.
    [3] CAMPBELL D B, CAMPBELL B A, CARTER L M, et al. No evidence for thick deposits of ice at the lunar south pole[J]. Nature, 2006, 443(7113): 835–837. doi: 10.1038/nature05167.
    [4] GAO Yao, ZHAO Fei, HOU Wentao, et al. Analysis of rock abundance on lunar surface and near-surface using Mini-RF SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9590–9605. doi: 10.1109/JSTARS.2023.3323510.
    [5] SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission[J]. Geophysical Research Letters, 2010, 37(6): L06204. doi: 10.1029/2009GL042259.
    [6] RANEY R K, SPUDIS P D, BUSSEY B, et al. The Lunar Mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. doi: 10.1109/JPROC.2010.2084970.
    [7] SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2016–2029. doi: 10.1002/jgre.20156.
    [8] BHIRAVARASU S S, CHAKRABORTY T, PUTREVU D, et al. Chandrayaan-2 dual-frequency synthetic aperture radar (DFSAR): Performance characterization and initial results[J]. The Planetary Science Journal, 2021, 2(4): 134. doi: 10.3847/PSJ/abfdbf.
    [9] WANG Yingjie, WANG R, LIU Kaiyu, et al. Lunar microwave imaging radar (LMIR)[C]. The 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 2022: 1–3.
    [10] WANG Chi, JIA Yingzhuo, XUE Changbin, et al. Scientific objectives and payload configuration of the Chang’E-7 mission[J]. National Science Review, 2024, 11(2): nwad329. doi: 10.1093/nsr/nwad329.
    [11] VAN ZYL J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 337–348. doi: 10.1109/36.54360.
    [12] SARABANDI K. Calibration of a polarimetric synthetic aperture radar using a known distributed target[C]. IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 1993: 968–970. doi: 10.1109/IGARSS.1993.322167.
    [13] MCKERRACHER P L, JENSEN J R, SEQUEIRA H B, et al. Mini-RF calibration, a unique approach to on-orbit synthetic aperture radar system calibration[C]. The 41st Lunar and Planetary Science Conference (LPSC XLI), The Woodlands, USA, 2010: 2352.
    [14] TANG Zhencheng, LIU Jianjun, WANG Xing, et al. Physical and mechanical characteristics of lunar soil at the Chang’E-4 landing site[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089499. doi: 10.1029/2020GL089499.
    [15] WU Bo, LI Yuan, LIU W C, et al. Centimeter-resolution topographic modeling and fine-scale analysis of craters and rocks at the Chang’E-4 landing site[J]. Earth and Planetary Science Letters, 2021, 553: 116666. doi: 10.1016/j.jpgl.2020.116666.
    [16] LI Yueyang and FA Wenzhe. Centimeter-scale surface roughness of the Chang’E landing regions and implications for radar scattering mechanisms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4510316. doi: 10.1109/TGRS.2024.3454034.
    [17] ULABY F T and LONG D G. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor, USA: University of Michigan Press, 2014: 451–452.
    [18] FUNG A K. Microwave Scattering and Emission Models and Their Applications[M]. Boston, USA, Artech House, 1994: 232–245.
    [19] PANCIERA R, TANASE M A, LOWELL K, et al. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4966–4979. doi: 10.1109/TGRS.2013.2286203.
    [20] CHEN Kunshan, WU T D, and FUNG A K. A study of backscattering from multiscale rough surface[J]. Journal of Electromagnetic Waves and Applications, 1998, 12(7): 961–979. doi: 10.1163/156939398X01187.
    [21] YANG Ying, CHEN Kunshan, and JIANG Rui. Modeling and analysis of microwave emission from multiscale soil surfaces using AIEM model[J]. Remote Sensing, 2022, 14(22): 5899. doi: 10.3390/rs14225899.
    [22] GUO Mingde, CHEN Kunshan, YANG Ying, et al. On the MCF model for predicting radar ocean backscatter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 2002715. doi: 10.1109/TGRS.2024.3370630.
    [23] JIN Yaqiu and XU Feng. Polarimetric Scattering and SAR Information Retrieval[M]. Hoboken, USA: John Wiley & Sons Singapore Pte. Ltd., 2013: 1–27. doi: 10.1002/9781118188149.
    [24] TSANG L and KONG J A. Scattering of Electromagnetic Waves: Advanced Topics[M]. New York, USA: John Wiley & Sons, Inc., 2001: 66–72. doi: 10.1002/0471224278.
    [25] NGHIEM S V, YUEH S H, KWOK R, et al. Symmetry properties in polarimetric remote sensing[J]. Radio Science, 1992, 27(5): 693–711. doi: 10.1029/92RS01230.
    [26] SMITH D E, ZUBER M T, JACKSON G B, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews, 2010, 150(1/4): 209–241. doi: 10.1007/s11214-009-9512-y.
    [27] SU Yan, WANG Ruigang, DENG Xiangjin, et al. Hyperfine structure of regolith unveiled by Chang’E-5 lunar regolith penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110414. doi: 10.1109/TGRS.2022.3148200.
    [28] CASELLA G and BERGER R L. Statistical Inference[M]. 2nd ed. Pacific Grove, USA: Thomson Learning, 2002: 432–442.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-29

目录

    /

    返回文章
    返回