基于低推导复杂度的5阶NCS高速前斜视SAR成像算法

邓坤 田欣然 殷尘霄 张陆 陈展野 黄岩

邓坤, 田欣然, 殷尘霄, 等. 基于低推导复杂度的5阶NCS高速前斜视SAR成像算法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25187
引用本文: 邓坤, 田欣然, 殷尘霄, 等. 基于低推导复杂度的5阶NCS高速前斜视SAR成像算法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25187
DENG Kun, TIAN Xinran, YIN Chenxiao, et al. Fifth-order NCS algorithm for high-speed squint-forward-looking SAR imaging with low derivation complexity[J]. Journal of Radars, in press. doi: 10.12000/JR25187
Citation: DENG Kun, TIAN Xinran, YIN Chenxiao, et al. Fifth-order NCS algorithm for high-speed squint-forward-looking SAR imaging with low derivation complexity[J]. Journal of Radars, in press. doi: 10.12000/JR25187

基于低推导复杂度的5阶NCS高速前斜视SAR成像算法

DOI: 10.12000/JR25187 CSTR: 32380.14.JR25187
基金项目: 国家自然科学基金(62271142, U2341206);江苏省杰出青年基金(BK20250070)
详细信息
    作者简介:

    邓 坤, 博士生, 主要研究方向为雷达信号处理、合成孔径雷达成像与运动补偿技术

    田欣然, 硕士生, 主要研究方向为机载合成孔径雷达成像技术

    殷尘霄, 硕士生, 主要研究方向为毫米波雷达信号处理、 合成孔径雷达成像与运动补偿技术

    张 陆,硕士生, 主要研究方向为毫米波雷达信号处理、合成孔径雷达成像技术

    陈展野, 博士, 副教授, 主要研究方向为新型电磁调控系统信息处理、雷达数字仿真与数据增广以及雷达运动目标检测

    黄 岩, 博士, 教授, 主要研究方向为电磁智能对抗技术、目标智能感知技术、毫米波雷达、计算机视觉

    通讯作者:

    陈展野 chenzhanye@seu.edu.cn

    黄岩 yellowstone0636@hotmail.com

    责任主编:张增辉 Corresponding Editor: ZHANG Zenghui

  • 中图分类号: TN957.52

Fifth-order NCS Algorithm for High-speed Squint-forward-Looking SAR Imaging with Low Derivation Complexity

Funds: The National Natural Science Foundation of China (62271142, U2341206), The Outstanding Youth Foundation of Jiangsu Province (BK20250070)
More Information
  • 摘要: 高速前斜视(斜视角>70°)合成孔径雷达(SAR)成像受制于严重的距离多普勒耦合和多普勒空变。传统非线性调频变标(NCS)算法能够在大斜视(斜视角>30°)模式下有效消除多普勒空变,但其推导过程存在近似处理且推导复杂度随阶数急剧增长,难以推广至高阶形式,限制其在高速前斜视SAR系统中的应用。针对这一难题,该文证明基于驻定相位法(POSP)和级数反演法( MSR)进行傅里叶变换( FT)/傅里叶逆变换( IFT)实现方位数据域变换呈现规律性特征,据此提出一种基于低推导复杂度的5阶NCS算法,并针对NCS算法设计几何校正方法。确定斜距模型和NCS阶数,该方法仅需一次FT/IFT的推导即可获得NCS处理后的信号解析式,有效简化多普勒参数线性方程组的构建及NCS参数的求解过程,显著降低算法推导复杂度。基于前斜视成像几何模型,该文提出相应的瞬时投影几何模型,推导适用于NCS算法的几何校正方法。相比传统NCS算法,所提算法在保证计算效率的前提下具备更优的SAR成像性能,仿真与实测数据处理均验证了其在高速前斜视场景下的有效性和优越性。

     

  • 图  1  非线性频调变标处理流程

    Figure  1.  Nonlinear chirp scaling (NCS) processing flowcharts

    图  2  高速前斜视SAR成像几何模型

    Figure  2.  Geometric model of high-speed squint-forward SAR imaging

    图  3  二维波数谱的泰勒级数近似误差

    Figure  3.  Taylor series approximation error for 2D wavenumber spectrum

    图  4  方位时域相位的泰勒级数近似误差

    Figure  4.  Taylor series approximation error for azimuth time-domain phases

    图  5  NCS参数变换关系图

    Figure  5.  NCS parameter transformation relationship diagram

    图  6  高速前斜视SAR瞬时投影几何

    Figure  6.  Instantaneous high-speed squint-forward SAR imaging geometry

    图  7  所提算法流程图

    Figure  7.  Flowchart of the proposed algorithm

    图  8  所提方法仿真结果

    Figure  8.  Simulation results of the proposed algorithm

    图  9  TNCS算法[33]的仿真数据处理结果

    Figure  9.  Simulation data processing results of the TNCS algorithm[33]

    图  12  所提算法的仿真数据处理结果

    Figure  12.  Simulation data processing results of the proposed algorithm

    图  10  HPCA算法[34]的仿真数据处理结果

    Figure  10.  Simulation data processing results of HPCA algorithm[34]

    图  11  MFNCS算法[6]的仿真数据处理结果

    Figure  11.  Simulation data processing results of MFNCS algorithm[6]

    图  13  实测数据成像结果

    Figure  13.  Imaging results of the measured data

    图  14  图13中区域A的放大结果

    Figure  14.  Magnified results of the Region A in Fig. 13

    图  15  图14中子区域的放大结果

    Figure  15.  Magnified results of the Sub-Regions in Fig. 14

    图  16  图15中目标a的方位包络图

    Figure  16.  Azimuth profiles of the Target a in Fig. 15

    图  17  实测SAR图像几何校正结果

    Figure  17.  Geometric correction result of the measured SAR image

    表  1  SAR系统的仿真参数

    Table  1.   Simulation parameters of the SAR system

    参数数值参数数值
    波长0.0175 m波束宽度
    PRF10 kHz参考斜视角80°
    带宽150 MHz参考速度1500 m/s
    采样率200 MHz参考斜距45 km
    方位时间1.0 s飞行高度4 km
    下载: 导出CSV

    表  2  点目标方位聚焦性能评估指标

    Table  2.   Azimuth focusing performance evaluation metrics of point targets

    方法 边缘点T1 边缘点T2 中心点T3 边缘点T4 边缘点T5
    PSLR ISLR PSLR ISLR PSLR ISLR PSLR ISLR PSLR ISLR
    TNCS –3.23 –2.88 –4.23 –4.90 –13.12 –11.07 –0.10 0.55 –1.0 2.12
    HPCA –10.36 –8.62 –12.83 –11.20 –13.21 –11.45 –12.24 –10.78 –2.19 –3.51
    MFNCS –9.36 –7.43 –13.20 –11.05 –13.24 –10.99 –12.82 –10.81 –12.64 –11.23
    所提算法 –13.22 –11.09 –13.21 –11.40 –13.25 –11.46 –13.20 –11.23 –13.07 –11.49
    注:加粗数值表示最优。
    下载: 导出CSV

    表  3  实测数据成像评估指标

    Table  3.   Imaging evaluation metrics of the measured data

    方法 香农熵[54] 对比度[55] 清晰度[56] 成像时间
    TNCS 1.8098 2.1408 5.8583e+22 50.47s
    HPCA 1.7664 2.2064 6.0789e+22 51.43s
    MFNCS 1.8047 2.4689 6.1331e+22 54.12s
    所提算法 1.7592 2.6456 6.2129e+22 50.64s
    注:加粗数值表示最优。
    下载: 导出CSV
  • [1] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005: 225–362.
    [2] CHEN Xing, DONG Zhen, ZHANG Zehua, et al. Very high resolution synthetic aperture radar systems and imaging: A review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7104–7123. doi: 10.1109/JSTARS.2024.3374429.
    [3] 李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071.

    LI Chunsheng, YANG Wei, and WANG Pengbo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071.
    [4] 邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102.

    XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102.
    [5] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
    [6] DENG Kun, HUANG Yan, CHEN Zhanye, et al. A modified frequency nonlinear chirp scaling algorithm for high-speed high-squint synthetic aperture radar with curved trajectory[J]. Remote Sensing, 2024, 16(9): 1588. doi: 10.3390/rs16091588.
    [7] ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. A robust motion compensation approach for UAV SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3202–3218. doi: 10.1109/TGRS.2011.2180392.
    [8] 李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119.

    LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119.
    [9] 邢孟道, 马鹏辉, 楼屹杉, 等. 合成孔径雷达快速后向投影算法综述[J]. 雷达学报(中英文), 2024, 13(1): 1–22. doi: 10.12000/JR23183.

    XING Mengdao, MA Penghui, LOU Yishan, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13(1): 1–22. doi: 10.12000/JR23183.
    [10] LIANG Yi, LI Guofei, WEN Jun, et al. A fast time-domain SAR imaging and corresponding autofocus method based on hybrid coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8627–8640. doi: 10.1109/TGRS.2019.2921917.
    [11] LOU Yishan, LIN Hao, LI Ning, et al. A prior 2-D autofocus algorithm with ground Cartesian BP imaging for curved trajectory SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 2422–2436. doi: 10.1109/JSTARS.2023.3346942.
    [12] LOU Yishan, XING Mengdao, LIN Hao, et al. A time-domain processing framework for airborne and vehicle-borne microwave photonic SAR with a resolution of 0.02 m[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5211420. doi: 10.1109/TGRS.2025.3565299.
    [13] LU Jingyue, ZHANG Lei, and MENG Zhichao. A pulse-by-pulse Doppler ambiguity resolving algorithm for FLMC-SAR imaging based on fast factorized back-projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205419. doi: 10.1109/TGRS.2024.3351766.
    [14] BIE Bowen, XING Mengdao, XIA Xianggen, et al. A frequency domain backprojection algorithm based on local Cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/TGRS.2018.2848249.
    [15] CHEN Xiaoxiang, SUN Guangcai, XING Mengdao, et al. Ground Cartesian back-projection algorithm for high squint diving TOPS SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5812–5827. doi: 10.1109/TGRS.2020.3011589.
    [16] XIONG Tao, XING Mengdao, XIA Xianggen, et al. New applications of omega-K algorithm for SAR data processing using effective wavelength at high squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3156–3169. doi: 10.1109/TGRS.2012.2213342.
    [17] XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/TGRS.2013.2281454.
    [18] CHEN Jianlai, XIONG Rongqi, YU Hanwen, et al. Nonparametric full-aperture autofocus imaging for microwave photonic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5214815. doi: 10.1109/TGRS.2024.3411392.
    [19] MAO Xinhua. Spherical geometry algorithm for spaceborne synthetic aperture radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5217215. doi: 10.1109/TGRS.2024.3427014.
    [20] DING Zegang, ZHENG Pengnan, LI Han, et al. Spaceborne high-squint high-resolution SAR imaging based on two-dimensional spatial-variant range cell migration correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240114. doi: 10.1109/TGRS.2022.3222230.
    [21] LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward-looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780.
    [22] DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920.
    [23] ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734.
    [24] LI Yachao, XU Gaotian, ZHOU Song, et al. A novel CFFBP algorithm with noninterpolation image merging for bistatic forward-looking SAR focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225916. doi: 10.1109/TGRS.2022.3162230.
    [25] LOU Yishan, LIU Wenkang, XING Mengdao, et al. A novel motion compensation method applicable to ground Cartesian back-projection algorithm for airborne circular SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5208917. doi: 10.1109/TGRS.2023.3276051.
    [26] AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595–3609. doi: 10.1109/TGRS.2012.2183606.
    [27] LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and omega-K-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656–660. doi: 10.1109/LGRS.2016.2533631.
    [28] LI Zhenyu, XING Mengdao, XING Wenjie, et al. A modified equivalent range model and wavenumber-domain imaging approach for high-resolution-high-squint SAR with curved trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3721–3734. doi: 10.1109/TGRS.2017.2678763.
    [29] ZHANG Tinghao, LI Yachao, WANG Jun, et al. A modified range model and extended omega-K algorithm for high-speed-high-squint SAR with curved trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204515. doi: 10.1109/TGRS.2023.3255518.
    [30] BIE Bowen, QUAN Yinghui, SUN Guangcai, et al. A modified range model and Doppler resampling based imaging algorithm for high squint SAR on maneuvering platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1923–1927. doi: 10.1109/LGRS.2019.2959660.
    [31] XI Zirui, WANG Guanyong, ZHANG Lei, et al. An improved parametric polar format algorithm for missile-borne SAR imaging with large squint angles and dive trajectories[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4002705. doi: 10.1109/LGRS.2024.3522277.
    [32] LI Yongkang, ZHANG Yonghui, LIANG Junli, et al. An improved omega-K algorithm for squinted SAR with curved trajectory[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4000905. doi: 10.1109/LGRS.2023.3335650.
    [33] LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/TGRS.2016.2535391.
    [34] LIANG Yi, LI Zhenyu, ZENG Letian, et al. A high-order phase correction approach for focusing HS-SAR small-aperture data of high-speed moving platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4551–4561. doi: 10.1109/JSTARS.2015.2459765.
    [35] WANG Zhigui, LIU Mei, AI Gengting, et al. Focusing of bistatic SAR with curved trajectory based on extended azimuth nonlinear chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4160–4179. doi: 10.1109/TGRS.2019.2961562.
    [36] QU Tan, ZHANG Yan, and WU Jiaji. A novel AFNCS algorithm for super-resolution SAR in curve trajectory[J]. Multimedia Systems, 2021, 27(4): 837–844. doi: 10.1007/s00530-020-00715-z.
    [37] DENG Yuhui, SUN Guangcai, HAN Liang, et al. 2-D wavenumber domain autofocusing for high-resolution highly squinted SAR imaging based on equivalent broadside model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220515. doi: 10.1109/TGRS.2023.3328392.
    [38] ZHANG Tinghao, LI Yachao, YUAN Mingze, et al. Focusing highly squinted FMCW-SAR data using the modified wavenumber-domain algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1999–2011. doi: 10.1109/JSTARS.2023.3266886.
    [39] SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/TGRS.2010.2102040.
    [40] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 150–154. doi: 10.1109/LGRS.2012.2195634.
    [41] CHEN Jianlai, ZHANG Junchao, YU Hanwen, et al. Blind NCS-based autofocus for airborne wide-beam SAR imaging[J]. IEEE Transactions on Computational Imaging, 2022, 8: 626–638. doi: 10.1109/TCI.2022.3194745.
    [42] LIAO Yi, LUO Zhibang, WANG Jian, et al. Processing of mosaic SAR using time frequency analysis and azimuth NCS algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4625–4639. doi: 10.1109/TAES.2023.3246433.
    [43] 刘裕洲, 蔡天倚, 李亚超, 等. 联合距离方位二维NCS的星弹双基前视SAR成像算法[J]. 雷达学报, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.

    LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
    [44] 陈溅来, 熊毅, 徐刚, 等. 基于子图像变标的非线性轨迹SAR成像及其自聚焦方法[J]. 雷达学报, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171.

    CHEN Jianlai, XIONG Yi, XU Gang, et al. Nonlinear trajectory synthetic aperture radar imaging and autofocus algorithm based on sub-image nonlinear chirp scaling[J]. Journal of Radars, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171.
    [45] WU Yufeng, SUN Guangcai, XIA Xianggen, et al. An azimuth frequency non-linear chirp scaling (FNCS) algorithm for TOPS SAR imaging with high squint angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 213–221. doi: 10.1109/JSTARS.2013.2258893.
    [46] LI Zhenyu, LIANG Yi, XING Mengdao, et al. Focusing of highly squinted SAR data with frequency nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 23–27. doi: 10.1109/LGRS.2015.2492681.
    [47] ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/TGRS.2015.2447393.
    [48] CHEN Si, ZHAO Huichang, ZHANG Shuning, et al. An extended nonlinear chirp scaling algorithm for missile borne SAR imaging[J]. Signal Processing, 2014, 99: 58–68. doi: 10.1016/j.sigpro.2013.12.017.
    [49] SUN Zhichao, WU Junjie, LI Zhongyu, et al. Highly squint SAR data focusing based on keystone transform and azimuth extended nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 145–149. doi: 10.1109/LGRS.2014.2329554.
    [50] NEO Y L, WONG G, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862.
    [51] LI Zhenyu, CHEN Jianlai, DU Wentao, et al. Focusing of maneuvering high-squint-mode SAR data based on equivalent range model and wavenumber-domain imaging algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2419–2433. doi: 10.1109/JSTARS.2020.2993466.
    [52] 李震宇. 机动平台SAR大斜视成像算法研究[D]. [博士论文], 西安电子科技大学, 2017.

    LI Zhenyu. Study on high squint imaging algorithms for SAR mounted on maneuvering platforms [D]. [Ph.D. dissertation], Xidian University, 2017.
    [53] MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743.
    [54] ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Fast entropy minimization based autofocusing technique for ISAR imaging[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3425–3434. doi: 10.1109/TSP.2015.2422686.
    [55] DENG Kun, HUANG Yan, CHEN Zhanye, et al. A novel sub-aperture contrast-based WPGA method for automotive SAR imaging[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(7): 10386–10403. doi: 10.1109/TITS.2025.3552092.
    [56] MORRISON R L, DO M N, and MUNSON D C. SAR image autofocus by sharpness optimization: A theoretical study[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2309–2321. doi: 10.1109/TIP.2007.903252.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-26
  • 修回日期:  2025-11-20

目录

    /

    返回文章
    返回