OSDataset2.0:SAR-光学影像匹配数据集及评估基准

向俞明 陈锦杨 洪中华 焦念刚 王峰 尤红建 童小华

向俞明, 陈锦杨, 洪中华, 等. OSDataset2.0:SAR-光学影像匹配数据集及评估基准[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25176
引用本文: 向俞明, 陈锦杨, 洪中华, 等. OSDataset2.0:SAR-光学影像匹配数据集及评估基准[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25176
XIANG Yuming, CHEN Jinyang, HONG Zhonghua, et al. OSDataset2.0: sar-optical image matching dataset and evaluation benchmark[J]. Journal of Radars, in press. doi: 10.12000/JR25176
Citation: XIANG Yuming, CHEN Jinyang, HONG Zhonghua, et al. OSDataset2.0: sar-optical image matching dataset and evaluation benchmark[J]. Journal of Radars, in press. doi: 10.12000/JR25176

OSDataset2.0:SAR-光学影像匹配数据集及评估基准

DOI: 10.12000/JR25176 CSTR: 32380.14.J25176
基金项目: 上海市科技计划项目(2024CSJZN01300),微波成像全国重点实验室基金
详细信息
    作者简介:

    向俞明,博士,副教授,主要研究方向为SAR影像高精度几何处理

    陈锦杨,硕士生,主要研究方向为异源遥感影像匹配

    洪中华,博士,教授,主要研究方向为全球遥感高精度测图

    焦念刚,博士,助理研究员,主要研究方向为遥感影像几何处理

    王 峰,博士,副研究员,主要研究方向为多源遥感影像精细化处理

    尤红建,博士,研究员,主要研究方向为遥感影像几何精准处理等

    童小华,博士,教授,中国工程院院士,主要研究方向为航天测绘遥感与深空探测

    通讯作者:

    洪中华zhhong@shou.edu.cn

    责任主编:杨文 Corresponding Editor: YANG Wen

  • 中图分类号: TP751

OSDataset2.0: SAR-Optical Image Matching Dataset and Evaluation Benchmark

Funds: Shanghai Science and Technology Program Project (2024CSJZN01300), National Key Laboratory of Microwave Imaging Foundation
More Information
    Corresponding author: HONG Zhonghua
  • 摘要: 合成孔径雷达(SAR)和可见光是地球观测领域中两类关键的遥感传感器,其影像匹配在图像融合、协同解译与高精度定位等任务中具有广泛应用。随着对地观测数据的迅猛增长,SAR-光学跨模态影像匹配的重要性日益凸显,相关研究也取得了显著进展。特别是基于深度学习的方法,凭借其在跨模态特征表达与高层语义提取方面的优势,展现出卓越的匹配精度与环境适应能力。然而,现有公开数据集多局限于小尺寸图像块,缺乏涵盖真实大尺度场景的完整影像对,难以全面评估匹配算法在实际遥感场景中的性能,同时也制约了深度学习模型的训练与泛化能力提升。针对上述问题,该文构建并公开发布了OSDataset2.0,一个面向SAR-光学影像匹配任务的大规模基准数据集。该数据集包含两部分:局部训练数据集与全幅场景测试集,局部训练数据集提供覆盖阿根廷、澳大利亚、波兰、德国、俄罗斯、法国、卡塔尔、马来西亚、美国、日本、土耳其、新加坡、印度、中国 14 个国家的6,476块512×512像素的配准图像块全幅场景测试集则提供一对光学与SAR整景影像。团队为整景影像提供了利用成像机理一致性原则提取出的高精度均匀分布的真值数据,并配套通用评估代码,支持对任意匹配算法进行配准精度的量化分析。为进一步验证数据集的有效性与挑战性,该文在OSDataset2.0上系统评估了11种具有代表性的SAR-光学影像匹配方法,涵盖了传统特征匹配与主流深度学习模型。实验结果表明,该数据集不仅能够有效支撑算法性能对比,还可为后续研究提供可靠的训练资源与统一的评估基准。

     

  • 图  1  相同场景下的SAR-光学影像对

    Figure  1.  SAR-optical image pairs of the same object

    图  2  OSDataset2.0数据集结构

    Figure  2.  Structure of OSDataset2.0

    图  3  OSDataset2.0的部分数据展示

    Figure  3.  Partial Data Display from OSDataset2.0

    图  4  局部训练数据集构建流程图

    Figure  4.  Patch-Level Subset Construction Flowchart

    图  5  在SAR影像中具有十字形强散射响应的街灯杆。

    Figure  5.  Streetlight poles exhibiting cross-shaped strong scatter responses in SAR imagery.

    图  6  不同方法在局部训练数据集上不同th对应的SR

    Figure  6.  SR of different methods at different th on the Patch-level subset

    图  7  不同方法在局部训练数据集上不同th对应的RMSE

    Figure  7.  RMSE of different methods at different th on the Patch-level subset

    图  8  不同方法在局部训练数据集上不同th对应的NCM

    Figure  8.  NCM of different methods at different th on the Patch-level subset

    图  9  使用真值点评估11种方法的箱线图

    Figure  9.  Boxplots evaluating 11 methods using ground truth points

    图  10  OSDataset2.0:SAR-光学影像匹配数据集及评估基准

    Figure  10.  Release webpage of OSDataset2.0

    表  1  现有SAR-光学遥感影像数据集

    Table  1.   Existing SAR-optical Remote Sensing Image Datasets

    数据集 空间分辨率 规模 配准方式/真值
    OSDataset 1 m 10,692 对256×256 像素影像切片 RPC 粗配准后用分块仿射/三角网精配准,人工复核
    BRIGHT 0.3~1 m 4,246 对1,024×1,024 像素影像切片 专家人工挑选控制点配准(约 1.0~1.4 像素)
    Multi-Resolution-SAR 0.16~10 m 10,850对512×512 像素影像切片 互信息 + RANSAC粗配准,人工选择8~12 个控制点精修,
    并对0.16 m 子集二次复核确保精度
    QXS-SAROPT 1 m 20,000对256×256像素影像切片 专家人工选取8~12个同名控制点配准,人工复查
    OsEval 0.33~0.56 m 1,232 对3,500×3,500–5,500×5,200像素
    影像块
    以路灯杆基座为控制点实现亚像素定位
    下载: 导出CSV

    表  2  不同方法在局部训练数据集上的评估结果

    Table  2.   Evaluation results of different methods on Patch-level subset

    类别方法th=3th=5th=7th=10
    NCM↑RMSE↓SR↑NCM↑RMSE↓SR↑NCM↑RMSE↓SR↑NCM↑RMSE↓SR↑
    特征EOSS1552.94162644.20543204.92723585.5584
    ECSS5032.81287713.92588954.61729745.2982
    SRIF272.9610444.3847525.2266566.0477
    POS-GIFT582.9931054.82151396.37281658.3440
    区域MAGD412.7030563.8850664.7661725.7870
    CFOG392.7132483.9444525.0049546.4852
    深度
    学习
    OSMNet1752.58422353.50632644.13732864.8081
    XFeat62.993124.8313176.4723238.5240
    MINIMA-LG432.9020664.2444765.2356826.4065
    MINIMA-LoFTR1072.24471083.21571113.94701244.6481
    下载: 导出CSV

    表  3  不同方法在全幅场景测试集上的评估结果

    Table  3.   Evaluation results of different methods on scene-level subset

    类别方法RMSE↓MEAN↓MEDIAN↓MAX↓
    特征EOSS5.054.463.9112.63
    ECSS4.924.504.539.76
    SRIF5.725.045.2111.23
    POS-GIFT6.585.845.1616.58
    MAGD4.293.713.468.86
    区域CFOG5.685.154.8115.08
    SFOC5.014.614.4811.12
    深度
    学习
    OSMNet4.133.593.459.81
    XFeat6.666.285.8512.06
    MINIMA-LG6.165.375.1912.45
    MINIMA-LoFTR4.964.514.1911.47
    下载: 导出CSV
  • [1] 向俞明, 滕飞, 王林徽, 等. 基于快速异源配准的高分辨率SAR影像海岛区域正射校正[J]. 雷达学报(中英文), 2024, 13(4): 866–884. doi: 10.12000/JR24022.

    XIANG Yuming, TENG Fei, WANG Linhui, et al. Orthorectification of high-resolution SAR images in island regions based on fast multimodal registration[J]. Journal of Radars, 2024, 13(4): 866–884. doi: 10.12000/JR24022.
    [2] YE Yuanxin, ZHANG Jiacheng, ZHOU Liang, et al. Optical and SAR image fusion based on complementary feature decomposition and visual saliency features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205315. doi: 10.1109/TGRS.2024.3366519.
    [3] HONG Zhonghua, ZHANG Zihao, HU Shangcheng, et al. A robust seamline extraction method for large-scale orthoimages using an adaptive cost A* algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 13322–13347. doi: 10.1109/JSTARS.2025.3570614.
    [4] HONG Zhonghua, ZHANG Hongyang, TONG Xiaohua, et al. Rapid fine-grained damage assessment of buildings on a large scale: A case study of the February 2023 earthquake in turkey[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5204–5220. doi: 10.1109/JSTARS.2024.3362809.
    [5] WAN Ling, XIANG Yuming, KANG Wenchao, et al. A self-supervised learning pretraining framework for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5630116. doi: 10.1109/TGRS.2025.3579416.
    [6] YOO J C and HAN T H. Fast normalized cross-correlation[J]. Circuits, Systems and Signal Processing, 2009, 28(6): 819–843. doi: 10.1007/s00034-009-9130-7.
    [7] YE Yuanxin, SHAN Jie, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2941–2958. doi: 10.1109/TGRS.2017.2656380.
    [8] DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, USA, 2005: 886–893. doi: 10.1109/CVPR.2005.177.
    [9] FAN Jianwei, WU Yan, LI Ming, et al. SAR and optical image registration using nonlinear diffusion and phase congruency structural descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5368–5379. doi: 10.1109/TGRS.2018.2815523.
    [10] XIANG Yuming, TAO Rongshu, WANG Feng, et al. Automatic registration of optical and SAR images via improved phase congruency model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5847–5861. doi: 10.1109/JSTARS.2020.3026162.
    [11] YE Yuanxin, BRUZZONE L, SHAN Jie, et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9059–9070. doi: 10.1109/TGRS.2019.2924684.
    [12] YE Yuanxin, ZHU Bai, TANG Tengfeng, et al. A robust multimodal remote sensing image registration method and system using steerable filters with first-and second-order gradients[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 331–350. doi: 10.1016/j.isprsjprs.2022.04.011.
    [13] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94.
    [14] XIANG Yuming, WANG Feng, and YOU Hongjian. OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3078–3090. doi: 10.1109/TGRS.2018.2790483.
    [15] HOU Zhuolu, LIU Yuxuan, and ZHANG Li. POS-GIFT: A geometric and intensity-invariant feature transformation for multimodal images[J]. Information Fusion, 2024, 102: 102027. doi: 10.1016/j.inffus.2023.102027.
    [16] TOLA E, LEPETIT V, and FUA P. A fast local descriptor for dense matching[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587673.
    [17] LI Jiayuan, HU Qingwu, and ZHANG Yongjun. Multimodal image matching: A scale-invariant algorithm and an open dataset[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 77–88. doi: 10.1016/j.isprsjprs.2023.08.010.
    [18] XIONG Xin, JIN Guowang, WANG Jiajun, et al. Robust multimodal remote sensing image matching based on enhanced oriented self-similarity descriptor[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4010705. doi: 10.1109/LGRS.2024.3398725.
    [19] HONG Zhonghua, CHEN Jinyang, TONG Xiaohua, et al. Robust multimodal remote sensing image matching using edge consistency scale-space and significant relative response[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5627022. doi: 10.1109/TGRS.2025.3577755.
    [20] ZHANG Han, LEI Lin, NI Weiping, et al. Explore better network framework for high-resolution optical and SAR image matching[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4704418. doi: 10.1109/TGRS.2021.3126939.
    [21] DENG Yuxin and MA Jiayi. ReDFeat: Recoupling detection and description for multimodal feature learning[J]. IEEE Transactions on Image Processing, 2023, 32: 591–602. doi: 10.1109/TIP.2022.3231135.
    [22] REN Jiangwei, JIANG Xingyu, LI Zizhuo, et al. MINIMA: Modality invariant image matching[C]. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2025: 23059–23068. doi: 10.1109/CVPR52734.2025.02147.
    [23] XIANG Yuming, WANG Xuanqi, WANG Feng, et al. A global-to-local algorithm for high-resolution optical and SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215320. doi: 10.1109/TGRS.2023.3309855.
    [24] HUANG Meiyu, XU Yao, QIAN Lixin, et al. The QXS-SAROPT dataset for deep learning in SAR-optical data fusion[EB/OL]. https://arxiv.org/abs/2103.08259, 2021. doi: 10.48550/ARXIV.2103.08259.
    [25] CHEN Hongruixuan, SONG Jian, DIETRICH O, et al. BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response[EB/OL]. https://arxiv.org/abs/2501.06019, 2025. doi: 10.48550/ARXIV.2501.06019.
    [26] ZHANG Wenfei, ZHAO Ruipeng, YAO Yongxiang, et al. Multi-resolution SAR and optical remote sensing image registration methods: A review, datasets, and future perspectives[EB/OL]. https://arxiv.org/abs/2502.01002, 2025. doi: 10.48550/ARXIV.2502.01002.
    [27] WU Yue, MA Wenping, GONG Maoguo, et al. A novel point-matching algorithm based on fast sample consensus for image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 43–47. doi: 10.1109/LGRS.2014.2325970.
    [28] POTJE G, CADAR F, ARAUJO A, et al. XFeat: Accelerated features for lightweight image matching[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 2682–2691. doi: 10.1109/CVPR52733.2024.00259.
    [29] FISCHLER M A and BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381–395. doi: 10.1145/358669.358692.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-16

目录

    /

    返回文章
    返回