-
摘要: 高分辨率宽幅(HRWS)成像是未来星载合成孔径雷达(SAR)系统的重要发展方向。多发多收(MIMO)SAR系统具备更高的空间自由度,具有进一步增强系统性能的潜力。然而有效实现MIMO-SAR中不同发射通道回波的分离,是发挥其空间自由度优势的关键前提。该文基于SAR体制中所采用信号的相位特性,以及“走-停”模型中空间—时间特性,设计一种适用于MIMO-SAR体制的新型空时相位编码(STPC)波形。该波形通过相位编码对发射信号在距离向进行调制,并依据预设的编码调制序列,在每个脉冲周期内的不同空间位置处进行信号发射。接收时基于与发射端匹配的编码调制时序,对混叠回波进行解调处理,可实现不同发射通道回波的高效分离。所提方案能够与现有经典的方位多通道重构方法结合,有效缓解了脉冲重复频率(PRF)与回波可分离性之间的矛盾。与现有MIMO-SAR系统中的Alamouti波形、短偏移正交(STSO)波形、分段相位编码(SPC)波形相比,所需天线资源减少近一半,降低了系统硬件实现成本与复杂度。最后,通过点目标与分布场景的仿真实验证明所提波形及处理方案能够有效抑制不同波形之间的干扰信号,具有良好的成像性能。Abstract: High-resolution wide-swath imaging is a key development direction for next-generation spaceborne synthetic aperture radar (SAR) systems. Multiple-input multiple-output (MIMO) SAR systems offer high spatial degrees of freedom, enabling enhanced system performance. However, effectively separating echoes from different transmit channels in MIMO-SAR systems is key to unlocking their advantages in spatial degrees of freedom. In this regard, a novel space-time phase-coded (STPC) waveform for MIMO-SAR systems is proposed based on the phase characteristics of SAR signals and the space-time properties of the “stop-and-go” model. This waveform modulates transmitted signals in the range dimension via phase coding and emits them at distinct spatial positions within each pulse repetition period, following a preset coding sequence. Upon reception, demodulating aliased echoes using receiver timing matched to the transmitter enables the efficient separation of echoes from different transmit channels. The proposed scheme can be integrated with existing classical azimuth multichannel reconstruction methods, effectively mitigating the trade-off between pulse repetition frequency and echo separability. Compared with the Alamouti, short-term shift-orthogonal, and segmented phase code waveforms in current MIMO-SAR systems, the STPC approach reduces antenna requirements by nearly 50%, thereby lowering the cost and complexity of hardware implementation. Simulation experiments on point targets and distributed scenes verify that the proposed waveform and processing scheme effectively suppress interwaveform interference and deliver strong imaging performance.
-
表 1 星载MIMO-SAR系统参数
Table 1. Parameters of spaceborne MIMO-SAR system
参数 指标 系统载频 9.6 GHz 俯仰向天线长度(m) 4 方位向天线长度(m) 15 信号带宽(Mhz) 40 信号时宽(μs) 10 多普勒带宽(Hz) 3003 系统脉冲重复频率(Hz) 2402 平台高度(Km) 700 卫星速度(m/s) 7507 下视角(°) 23°~ 26° 方位向通道数量 3 俯仰向通道数量 2 发射机个数 2 信号类型 正负调频信号 表 2 场景二回波分离指标分析
Table 2. Echo separation index analysis of Scene 2
表 3 回波分离所需天线数量比较
Table 3. Comparison of the number of antennas required for echo separation
MIMO-SAR方案 天线数量 Alamouti-STC方案 M STSO方案 2M-1 SPC方案 2M-1 OFDM方案 2M-1 所提STPC方案 M -
[1] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008.DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008. [2] 王杰, 丁赤飚, 梁兴东, 等. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220–234. doi: 10.12000/JR17046.WANG Jie, DING Chibiao, LIANG Xingdong, et al. Research outline of airborne MIMO-SAR system with same time-frequency coverage[J]. Journal of Radars, 2018, 7(2): 220–234. doi: 10.12000/JR17046. [3] CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. doi: 10.1109/TGRS.2013.2286520. [4] KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–6. [5] KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148. [6] ENDER J. MIMO SAR. International radar symposium[C]. MIMO-SAR". International Radar Symposium, Cologne, Germany German Institute of Navigation, 2007: 580–588. (查阅网上资料,未找到本条文献信息,请确认). [7] JIN Guodong, AUBRY A, DE MAIO A, et al. Quasi-orthogonal waveforms for ambiguity suppression in spaceborne quad-pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204617. doi: 10.1109/TGRS.2021.3066590. [8] JIN Guodong, WANG Wei, DENG Yunkai, et al. A novel range-azimuth joint modulation scheme for range ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5207210. doi: 10.1109/TGRS.2021.3075233. [9] WEI Yihai, ZHANG Yongwei, LIU Yang, et al. Elevation-interpulse phase-coded waveform: A novel radar waveform for spaceborne MIMO-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5213818. doi: 10.1109/TGRS.2025.3574534. [10] KRIEGER G, YOUNIS M, HUBER S, et al. MIMO-SAR and the orthogonality confusion[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1533–1536. doi: 10.1109/IGARSS.2012.6351242. [11] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934. [12] ROMMEL T, YOUNIS M, and KRIEGER G. Demonstration of simultaneous quad-polarization SAR imaging for extended targets in MIMO-SAR[C]. 2016 German Microwave Conference (GeMiC), Bochum, Germany, 2016: 381–384. doi: 10.1109/GEMIC.2016.7461636. [13] ENDER J H G and BRENNER A R. PAMIR-a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 165–172. doi: 10.1049/ip-rsn:20030445. [14] WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615–1625. doi: 10.1109/TGRS.2014.2346478. [15] CHEN Chunyang and VAIDYANATHAN P P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632. [16] HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations-including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108. [17] DENG Hai. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126–3135. doi: 10.1109/TSP.2004.836530. [18] KHAN H A, ZHANG Yangyang, JI Chunlin, et al. Optimizing polyphase sequences for orthogonal netted radar[J]. IEEE Signal Processing Letters, 2006, 13(10): 589–592. doi: 10.1109/LSP.2006.877143. [19] HE Feng, DONG Zhen, and LIANG Diannong. A novel space-time coding Alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229–233. doi: 10.1109/LGRS.2014.2333232. [20] JIN Guo, DENG Yunkai, WANG Wei, et al. Segmented phase code waveforms: A novel radar waveform for spaceborne MIMO-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5764–5779. doi: 10.1109/TGRS.2020.3023385. [21] WANG Yu, JIN Guodong, JIANG Penghui, et al. Improved MIMO-SAR echo separation scheme with constrained/generalized LASSO regression: New insights and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5223818. doi: 10.1109/TGRS.2024.3464541. [22] WANG Yu, JIN Guodong, SHI Tianyue, et al. A novel MIMO-SAR echo separation solution for reducing the system complexity: Spectrum preprocessing and segment synthesis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5206517. doi: 10.1109/TGRS.2023.3264704. [23] KIM J H, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577. [24] JIN Guodong, WANG Yu, ZHU Daiyin, et al. A reconfigurable MIMO-SAR transmission scheme based on inter-pulse and intra-pulse joint phase modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 4265–4276. doi: 10.1109/TSP.2022.3200873. [25] NIU Shilin, JIN Guodong, CHENG Yuan, et al. A novel MIMO SAR transmission scheme for restoring repeated equivalent phase centers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5216618. doi: 10.1109/TGRS.2023.3316623. [26] ZHANG Yanyan, HAN Shuo, WEI Tiantian, et al. First demonstration of echo separation for orthogonal waveform encoding MIMO-SAR based on airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225016. doi: 10.1109/TGRS.2022.3160204. [27] ZHAO Haonan, ZHANG Zhimin, QIAO Kai, et al. Demonstration of MIMO-SAR echo separation scheme for improved OFDM waveforms with airborne X-band DBF-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4015205. doi: 10.1109/LGRS.2024.3449391. [28] GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/TAES.2009.5089542. [29] WANG Yu, ZHU Daiyin, JIN Guodong, et al. A robust digital beamforming on receive in elevation for airborne MIMO SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5233619. doi: 10.1109/TGRS.2022.3199424. [30] SHI Tianyue, MAO Xinhua, JAKOBSSON A, et al. Parametric model-based 2-D autofocus approach for general BiSAR filtered backprojection imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5233414. doi: 10.1109/TGRS.2022.3198648. [31] 叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376–387. doi: 10.12000/JR17048.YE Kai, YU Weidong, and WANG Wei. Investigation on processing scheme for MIMO SAR with STSO chirp waveforms[J]. Journal of Radars, 2017, 6(4): 376–387. doi: 10.12000/JR17048. -
作者中心
专家审稿
责编办公
编辑办公
下载: