基于空时相位编码的MIMO-SAR回波分离方案

魏屹海 叶新魁 张永伟 刘洋 王伟 王沛

魏屹海, 叶新魁, 张永伟, 等. 基于空时相位编码的MIMO-SAR回波分离方案[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25148
引用本文: 魏屹海, 叶新魁, 张永伟, 等. 基于空时相位编码的MIMO-SAR回波分离方案[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25148
WEI Yihai, YE Xinkui, ZHANG Yongwei, et al. Novel space-time phase-coded echo separation method for MIMO SAR[J]. Journal of Radars, in press. doi: 10.12000/JR25148
Citation: WEI Yihai, YE Xinkui, ZHANG Yongwei, et al. Novel space-time phase-coded echo separation method for MIMO SAR[J]. Journal of Radars, in press. doi: 10.12000/JR25148

基于空时相位编码的MIMO-SAR回波分离方案

DOI: 10.12000/JR25148 CSTR: 32380.14.JR25148
基金项目: 国家重点研发计划 (2023YFB3904901)
详细信息
    作者简介:

    魏屹海,博士生,主要研究方向为多发多收合成孔径雷达、波形设计、雷达信号处理等

    叶新魁,硕士,工程师,主要研究方向为雷达与通信信号处理

    张永伟,博士,副研究员,主要研究方向为高分宽幅SAR、波形设计、MIMO SAR等

    刘 洋,硕士,助理研究员,主要研究方向为SAR信号产生、高速电路设计

    王 伟,博士,研究员,博士生导师,主要研究方向为星载微波成像系统体制与信号处理技术

    王 沛,博士,研究员,博士生导师,主要研究方向为合成孔径雷达系统设计及宽带信号处理技术

    通讯作者:

    张永伟 zhangyw01@aircas.ac.cn

    王沛 wangpei@aircas.ac.cn

  • 责任主编:李宁 Corresponding Editor: LI Ning
  • 中图分类号: TN959.74

Novel Space-Time Phase-Coded Echo Separation Method for MIMO SAR

Funds: National Natural Key Research and Development Program of China under Grant (2023YFB3904901)
More Information
  • 摘要: 高分辨率宽幅(HRWS)成像是未来星载合成孔径雷达(SAR)系统的重要发展方向。多发多收(MIMO)SAR系统具备更高的空间自由度,具有进一步增强系统性能的潜力。然而有效实现MIMO-SAR中不同发射通道回波的分离,是发挥其空间自由度优势的关键前提。该文基于SAR体制中所采用信号的相位特性,以及“走-停”模型中空间—时间特性,设计一种适用于MIMO-SAR体制的新型空时相位编码(STPC)波形。该波形通过相位编码对发射信号在距离向进行调制,并依据预设的编码调制序列,在每个脉冲周期内的不同空间位置处进行信号发射。接收时基于与发射端匹配的编码调制时序,对混叠回波进行解调处理,可实现不同发射通道回波的高效分离。所提方案能够与现有经典的方位多通道重构方法结合,有效缓解了脉冲重复频率(PRF)与回波可分离性之间的矛盾。与现有MIMO-SAR系统中的Alamouti波形、短偏移正交(STSO)波形、分段相位编码(SPC)波形相比,所需天线资源减少近一半,降低了系统硬件实现成本与复杂度。最后,通过点目标与分布场景的仿真实验证明所提波形及处理方案能够有效抑制不同波形之间的干扰信号,具有良好的成像性能。

     

  • 图  1  MIMO-SAR成像几何模型与系统相位中心示意图

    Figure  1.  Geometric model of MIMO-SAR imaging and schematic diagram of system phase center

    图  2  基于空时编码的MIMO-SAR发射-接收构型

    Figure  2.  MIMO-SAR Transmit-receive configuration based on Space-time coding

    图  3  MIMO-SAR成像几何构型示意图

    Figure  3.  Schematic diagram of MIMO-SAR imaging geometry configuration

    图  4  MIMO信号生成时序图

    Figure  4.  Timing diagram of MIMO signal generation

    图  5  MIMO-SAR系统中空时相位编码信号传输过程流程图

    Figure  5.  Flowchart of the transmission process of space-time phase-coded signals in the MIMO-SAR system

    图  6  主要处理流程框架图

    Figure  6.  Main processing procedure

    图  7  混叠回波重排序列图

    Figure  7.  aliased echo reordering sequence diagram

    图  8  回波分离处理中混叠信号方位向相位中心示意图

    Figure  8.  Schematic diagram of the azimuth phase center of the aliased signal in the echo separation processing

    图  9  点目标成像场景示意图

    Figure  9.  Simulation scene of point targets

    图  10  情况一两组波形点目标二维仿真结果

    Figure  10.  2D Simulation results of point targets using two sets of waveforms in Case 1

    图  11  情况二两组波形点目标二维仿真结果

    Figure  11.  2D Simulation Results of Point Targets Using Two Sets of Waveforms in Case 2

    图  12  两个发射通道6个接收通道的MIMO-SAR分布式场景仿真成像结果

    Figure  12.  Simulation imaging results of MIMO-SAR distributed scenarios with two transmitting channels and six receiving channel

    图  13  场景一信号能量分布

    Figure  13.  The signal energy distribution in Scene 1

    图  14  信号分离指标随相位误差变化情况

    Figure  14.  The variation of signal separation metrics with phase error

    图  15  STSO方案与本文所提STPC方案的回波分离结果

    Figure  15.  Echo separation results of STSO scheme and the STPC scheme proposed in this paper

    表  1  星载MIMO-SAR系统参数

    Table  1.   Parameters of spaceborne MIMO-SAR system

    参数 指标
    系统载频 9.6 GHz
    俯仰向天线长度(m) 4
    方位向天线长度(m) 15
    信号带宽(Mhz) 40
    信号时宽(μs) 10
    多普勒带宽(Hz) 3003
    系统脉冲重复频率(Hz) 2402
    平台高度(Km) 700
    卫星速度(m/s) 7507
    下视角(°) 23°~ 26°
    方位向通道数量 3
    俯仰向通道数量 2
    发射机个数 2
    信号类型 正负调频信号
    下载: 导出CSV

    表  2  场景二回波分离指标分析

    Table  2.   Echo separation index analysis of Scene 2

    参数 参考指标 图12(c) 图12(e) 图12(g)
    对比度 0.4487 0.8710 0.4491 0.4523
    MSE 217259048 106590879 216356821 214995539
    NCC 0.2666 0.0328 0.2648 0.3239
    下载: 导出CSV

    表  3  回波分离所需天线数量比较

    Table  3.   Comparison of the number of antennas required for echo separation

    MIMO-SAR方案天线数量
    Alamouti-STC方案M
    STSO方案2M-1
    SPC方案2M-1
    OFDM方案2M-1
    所提STPC方案M
    下载: 导出CSV
  • [1] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008.

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
    [2] 王杰, 丁赤飚, 梁兴东, 等. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220–234. doi: 10.12000/JR17046.

    WANG Jie, DING Chibiao, LIANG Xingdong, et al. Research outline of airborne MIMO-SAR system with same time-frequency coverage[J]. Journal of Radars, 2018, 7(2): 220–234. doi: 10.12000/JR17046.
    [3] CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. doi: 10.1109/TGRS.2013.2286520.
    [4] KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–6.
    [5] KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148.
    [6] ENDER J. MIMO SAR. International radar symposium[C]. MIMO-SAR". International Radar Symposium, Cologne, Germany German Institute of Navigation, 2007: 580–588. (查阅网上资料,未找到本条文献信息,请确认).
    [7] JIN Guodong, AUBRY A, DE MAIO A, et al. Quasi-orthogonal waveforms for ambiguity suppression in spaceborne quad-pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204617. doi: 10.1109/TGRS.2021.3066590.
    [8] JIN Guodong, WANG Wei, DENG Yunkai, et al. A novel range-azimuth joint modulation scheme for range ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5207210. doi: 10.1109/TGRS.2021.3075233.
    [9] WEI Yihai, ZHANG Yongwei, LIU Yang, et al. Elevation-interpulse phase-coded waveform: A novel radar waveform for spaceborne MIMO-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5213818. doi: 10.1109/TGRS.2025.3574534.
    [10] KRIEGER G, YOUNIS M, HUBER S, et al. MIMO-SAR and the orthogonality confusion[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1533–1536. doi: 10.1109/IGARSS.2012.6351242.
    [11] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934.
    [12] ROMMEL T, YOUNIS M, and KRIEGER G. Demonstration of simultaneous quad-polarization SAR imaging for extended targets in MIMO-SAR[C]. 2016 German Microwave Conference (GeMiC), Bochum, Germany, 2016: 381–384. doi: 10.1109/GEMIC.2016.7461636.
    [13] ENDER J H G and BRENNER A R. PAMIR-a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 165–172. doi: 10.1049/ip-rsn:20030445.
    [14] WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615–1625. doi: 10.1109/TGRS.2014.2346478.
    [15] CHEN Chunyang and VAIDYANATHAN P P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632.
    [16] HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations-including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108.
    [17] DENG Hai. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126–3135. doi: 10.1109/TSP.2004.836530.
    [18] KHAN H A, ZHANG Yangyang, JI Chunlin, et al. Optimizing polyphase sequences for orthogonal netted radar[J]. IEEE Signal Processing Letters, 2006, 13(10): 589–592. doi: 10.1109/LSP.2006.877143.
    [19] HE Feng, DONG Zhen, and LIANG Diannong. A novel space-time coding Alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229–233. doi: 10.1109/LGRS.2014.2333232.
    [20] JIN Guo, DENG Yunkai, WANG Wei, et al. Segmented phase code waveforms: A novel radar waveform for spaceborne MIMO-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5764–5779. doi: 10.1109/TGRS.2020.3023385.
    [21] WANG Yu, JIN Guodong, JIANG Penghui, et al. Improved MIMO-SAR echo separation scheme with constrained/generalized LASSO regression: New insights and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5223818. doi: 10.1109/TGRS.2024.3464541.
    [22] WANG Yu, JIN Guodong, SHI Tianyue, et al. A novel MIMO-SAR echo separation solution for reducing the system complexity: Spectrum preprocessing and segment synthesis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5206517. doi: 10.1109/TGRS.2023.3264704.
    [23] KIM J H, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577.
    [24] JIN Guodong, WANG Yu, ZHU Daiyin, et al. A reconfigurable MIMO-SAR transmission scheme based on inter-pulse and intra-pulse joint phase modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 4265–4276. doi: 10.1109/TSP.2022.3200873.
    [25] NIU Shilin, JIN Guodong, CHENG Yuan, et al. A novel MIMO SAR transmission scheme for restoring repeated equivalent phase centers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5216618. doi: 10.1109/TGRS.2023.3316623.
    [26] ZHANG Yanyan, HAN Shuo, WEI Tiantian, et al. First demonstration of echo separation for orthogonal waveform encoding MIMO-SAR based on airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225016. doi: 10.1109/TGRS.2022.3160204.
    [27] ZHAO Haonan, ZHANG Zhimin, QIAO Kai, et al. Demonstration of MIMO-SAR echo separation scheme for improved OFDM waveforms with airborne X-band DBF-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4015205. doi: 10.1109/LGRS.2024.3449391.
    [28] GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/TAES.2009.5089542.
    [29] WANG Yu, ZHU Daiyin, JIN Guodong, et al. A robust digital beamforming on receive in elevation for airborne MIMO SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5233619. doi: 10.1109/TGRS.2022.3199424.
    [30] SHI Tianyue, MAO Xinhua, JAKOBSSON A, et al. Parametric model-based 2-D autofocus approach for general BiSAR filtered backprojection imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5233414. doi: 10.1109/TGRS.2022.3198648.
    [31] 叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376–387. doi: 10.12000/JR17048.

    YE Kai, YU Weidong, and WANG Wei. Investigation on processing scheme for MIMO SAR with STSO chirp waveforms[J]. Journal of Radars, 2017, 6(4): 376–387. doi: 10.12000/JR17048.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-01

目录

    /

    返回文章
    返回