基于高分三号SAR图像的海面起伏场准线性反演

房玉鑫 范陈清 孟俊敏 张杰 闫秋双

房玉鑫, 范陈清, 孟俊敏, 等. 基于高分三号SAR图像的海面起伏场准线性反演[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25146
引用本文: 房玉鑫, 范陈清, 孟俊敏, 等. 基于高分三号SAR图像的海面起伏场准线性反演[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25146
FANG Yuxin, FAN Chenqing, MENG Junmin, et al. A quasi-linear inversion algorithm for retrieving sea surface elevation from gf-3 SAR images[J]. Journal of Radars, in press. doi: 10.12000/JR25146
Citation: FANG Yuxin, FAN Chenqing, MENG Junmin, et al. A quasi-linear inversion algorithm for retrieving sea surface elevation from gf-3 SAR images[J]. Journal of Radars, in press. doi: 10.12000/JR25146

基于高分三号SAR图像的海面起伏场准线性反演

DOI: 10.12000/JR25146 CSTR: 32380.14.JR25146
基金项目: 国家自然科学基金(42206178)
详细信息
    作者简介:

    房玉鑫,博士生,主要研究方向为深度学习与SAR海洋遥感应用

    范陈清,副研究员,主要研究方向为海洋微波遥感

    孟俊敏,研究员,主要研究方向为SAR海洋遥感应用、海洋内波遥感探测技术研究

    张 杰,研究员,主要研究方向为海洋遥感遥测研究

    闫秋双,副教授,主要研究方向为海洋微波遥感

    通讯作者:

    闫秋双yanqiushuang@upc.edu.cn

    责任主编:王小青 Corresponding Editor: WANG Xiaoqing

  • 中图分类号: TN95

A Quasi-linear Inversion Algorithm for Retrieving Sea Surface Elevation from GF-3 SAR Images

Funds: The National Natural Science Foundation of China under Grant (42206178)
More Information
  • 摘要: 通过对海面起伏场进行分析,不仅可获取常用的海浪统计参数,还能细致描述单个波浪的特性、检测异常巨浪、研究波群与波组的演变过程,从而更精准地描述大面积非均匀海况。该文基于准线性模型,提出一套适用于高分三号合成孔径雷达(SAR)图像的海面起伏场反演方案。该方案不依赖外部辅助数据,可在10 s内完成单景SAR数据的海面起伏场快速反演,并有效提取沿距离向传播的波浪信息。通过3种典型海况下的反演实例,体现出该方法在提取最大波高、识别波群与波组结构等方面的优势。进一步将2405景高分三号波模式SAR图像的反演结果与ERA5再分析海浪谱及高度计实测数据进行对比。结果显示,反演有效波高与ERA5数据的均方根误差为0.48 m。在有效波高低于3 m的中低海况下,反演有效波高与ERA5及高度计数据均保持良好一致性。本研究为基于高分3号SAR的海况信息快速监测与分析提供了有效工具。

     

  • 图  1  SARAL高度计测量与ERA5海浪谱有效波高散点图

    Figure  1.  The scatter plot between the significant wave height of SARAL measurements and ERA5 wave spectra

    图  2  基于GF-3 波模式SAR图像的海面起伏场反演流程图

    Figure  2.  The schematic of the entire framework of two-dimensional sea surface elevation retrieval from GF-3 SAR wave mode data.

    图  3  海面起伏场反演示例1

    Figure  3.  Case study 1 of the sea surface elevation retrieval.

    图  4  海面起伏场反演示例2

    Figure  4.  Case study 2 of the sea surface elevation retrieval

    图  5  海面起伏场反演示例3

    Figure  5.  Case study 3 of the sea surface elevation retrieval

    图  6  起伏场反演结果与ERA5海浪谱数据计算得到的海浪特征参数对比

    Figure  6.  The comparison between the wave integrating parameters computed from retrieved sea surface elevations and those from ERA5 wave spectra

    图  7  反演起伏场计算的有效波高与高度计测量值的散点对比。横轴和纵轴分别代表由高度计和由反演起伏场计算得到的有效波高值

    Figure  7.  The scatter comparison between the significant wave height computed from retrieved sea surface elevations and those from the altimeter measurements

    表  1  :不同ERA5有效波高区间下的海浪积分参数对比

    Table  1.   The comparison of wave integrating parameters under different intervals of ERA5 significant wave heights

    海况类别样本
    数量
    有效波高 $ {H}_{\mathrm{s}} $平均波周期 $ {T}_{\text{mw}} $
    RMSE (m)Bias (m)CorrRMSE (s)Corr
    $ {H}_{\mathrm{s}} $ < 1.5 m3920.1560.0520.7211.1580.623
    1.5 m < $ {H}_{\mathrm{s}} $ < 3 m1,7590.4630.1860.5371.1740.649
    $ {H}_{\mathrm{s}} $ > 3 m2540.8290.4270.5261.1760.681
    下载: 导出CSV
  • [1] HOLTHUIJSEN L H. Waves in Oceanic and Coastal Waters[M]. Cambridge: Cambridge University Press, 2010: 25-35. doi: 10.1017/CBO9780511618536.
    [2] HASSELMANN K, CHAPRON B, AOUF L, et al. The ERS SAR wave mode: A breakthrough in global ocean wave observations[OL]. European Space Agency, https://pure.mpg.de/rest/items/item_2039578/component/file_3317382/content. 2013: 167-197.
    [3] NIETO BORGE J C, LEHNER S, NIEDERMEIER A, et al. Detection of ocean wave groupiness from spaceborne synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07005. doi: 10.1029/2004JC002298.
    [4] SCHULZ-STELLENFLETH J and LEHNER S. Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1149–1160. doi: 10.1109/TGRS.20O4.826811.
    [5] ARDHUIN F, STOPA J E, CHAPRON B, et al. Observing sea states[J]. Frontiers in Marine Science, 2019, 6: 124. doi: 10.3389/fmars.2019.00124.
    [6] SCHULZ-STELLENFLETH J, HORSTMANN J, LEHNER S, et al. Sea surface imaging with an across-track interferometric synthetic aperture radar: The SINEWAVE experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2017–2028. doi: 10.1109/36.951092.
    [7] 张彪, 何宜军. 干涉合成孔径雷达海浪遥感研究[J]. 遥感技术与应用, 2006, 21(1): 11–17. doi: 10.3969/j.issn.1004-0323.2006.01.003.

    ZHANG Biao and HE Yijun. The study on remote sensing of ocean wave by interferometric synthetic aperture radar[J]. Remote Sensing Technology and Application, 2006, 21(1): 11–17. doi: 10.3969/j.issn.1004-0323.2006.01.003.
    [8] 张彪. 干涉合成孔径雷达海浪遥感理论与应用研究[D]. [博士论文], 中国科学院研究生院(海洋研究所), 2008.

    ZHANG Biao. Theoretical and application study of remoting sensing ocean wave by interferometric synthetic aperture radar[D]. [Ph.D. dissertation], Institute of Oceanology, Chinese Academy of Sciences, 2008.
    [9] SUN Daozhong, ZHANG Yanmin, WANG Yunhua, et al. Ocean wave inversion based on airborne IRA images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1001013. doi: 10.1109/TGRS.2021.3101223.
    [10] ZHANG Chunyang, CHEN Zezong, ZHAO Chen, et al. Deterministic sea wave prediction based on least squares with regularization algorithm using coherent microwave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4209809. doi: 10.1109/TGRS.2022.3203520.
    [11] BERGAMASCO F, TORSELLO A, SCLAVO M, et al. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves[J]. Computers & Geosciences, 2017, 107: 28–36. doi: 10.1016/j.cageo.2017.07.001.
    [12] QIU Jidong, ZHANG Biao, CHEN Zhongbiao, et al. A new modulation transfer function with range and azimuth dependence for ocean wave spectra retrieval from X-band marine radar observations[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1373–1377. doi: 10.1109/LGRS.2017.2713438.
    [13] 廖明生, 林珲. 雷达干涉测量: 原理与信号处理基础[M]. 北京: 测绘出版社, 2003: 36-48.

    LIAO Mingsheng and LIN Hui. Synthetic Aperture Radar Interferometry: Principle and Signal Processing[M]. Beijing: Surveying and Mapping Press, 2003: 36-48.
    [14] PAN Bo, WANG Zhibin, ZHANG Qingjun, et al. First simultaneous inversion of sea-surface velocity and height based on PIE-1 SAR constellation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5206118. doi: 10.1109/TGRS.2025.3544505.
    [15] SUN Daozhong, WANG Yunhua, XU Zhichao, et al. Ocean wave inversion based on hybrid along- and cross-track interferometry[J]. Remote Sensing, 2022, 14(12): 2793. doi: 10.3390/rs14122793.
    [16] HASSELMANN K and HASSELMANN S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion[J]. Journal of Geophysical Research: Oceans, 1991, 96(C6): 10713–10729. doi: 10.1029/91JC00302.
    [17] 王小青, 祁瑞, 姚晓楠, 等. 动态海面SAR成像高精度仿真方法及其典型应用[J]. 雷达学报(中英文), 2025, 14(3): 712–734. doi: 10.12000/JR24255.

    WANG Xiaoqing, QI Rui, YAO Xiaonan, et al. High-precision simulation of dynamic oceans synthetic aperture radar imaging and its typical application[J]. Journal of Radars, 2025, 14(3): 712–734. doi: 10.12000/JR24255.
    [18] WANG Anqi, WANG Xiaoqing, CHEN Jian, et al. Wave spectrum retrieval method based on full-link ocean surface SAR imaging simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5219120. doi: 10.1109/TGRS.2023.3324812.
    [19] ENGEN G and JOHNSEN H. SAR-ocean wave inversion using image cross spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 1047–1056. doi: 10.1109/36.406690.
    [20] MASTENBROEK C and DE VALK C F. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3497–3516. doi: 10.1029/1999JC900282.
    [21] HASSELMANN S, BRÜNING C, HASSELMANN K, et al. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans, 1996, 101(C7): 16615–16629. doi: 10.1029/96JC00798.
    [22] SCHULZ-STELLENFLETH J, LEHNER S, and HOJA D. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05004. doi: 10.1029/2004JC002822.
    [23] SUN Jian and GUAN Changlong. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images[J]. Chinese Journal of Oceanology and Limnology, 2006, 24(1): 12–20. doi: 10.1007/BF02842769.
    [24] JIANG Haoyu, MIRONOV A, REN Lin, et al. Validation of wave spectral partitions from SWIM instrument on-board CFOSAT against in situ data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4204013. doi: 10.1109/TGRS.2021.3110952.
    [25] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999–2049. doi: 10.1002/qj.3803.
    [26] NIEDERMEIER A, BORGE J C N, LEHNER S, et al. A wavelet-based algorithm to estimate ocean wave group parameters from radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 327–336. doi: 10.1109/TGRS.2004.836873.
    [27] WANG Jichao and WANG Yue. Evaluation of the ERA5 significant wave height against NDBC buoy data from 1979 to 2019[J]. Marine Geodesy, 2022, 45(2): 151–165. doi: 10.1080/01490419.2021.2011502.
    [28] FANG Yuxin, FAN Chenqing, CAO Rui, et al. A two-stage strategy for retrieving 2-D ocean wave spectra from Chinese Gaofen-3 SAR wave mode products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10013–10031. doi: 10.1109/JSTARS.2024.3394057.
    [29] 万勇, 马恩男, 曲若钊, 等. 哨兵1号和高分三号SAR数据海浪谱反演精度评估[J]. 遥感学报, 2023, 27(4): 891–904. doi: 10.11834/jrs.20221503.

    WAN Yong, MA Ennan, QU Ruozhao, et al. Accuracy evaluation of wave spectrum inversion based on Sentinel-1 and GF-3 SAR data[J]. National Remote Sensing Bulletin, 2023, 27(4): 891–904. doi: 10.11834/jrs.20221503.
    [30] HARA T and KARACHINTSEV A V. Observation of nonlinear effects in ocean surface wave frequency spectra[J]. Journal of Physical Oceanography, 2003, 33(2): 422–430. doi: 10.1175/1520-0485(2003)033<0422:OONEIO>2.0.CO;2.
    [31] ZHENG Zhichao, YAN Qiushuang, FAN Chenqing, et al. Optimized estimation of azimuth cutoff for retrieval of significant wave height and wind speed from polarimetric Gaofen-3 SAR wave mode data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10938–10955. doi: 10.1109/JSTARS.2024.3405736.
    [32] DIDENKULOVA E, DIDENKULOVA I, and MEDVEDEV I. Freak wave events in 2005-2021: Statistics and analysis of favourable wave and wind conditions[J]. Natural Hazards and Earth System Sciences Discussions, 2022, 23(4): 1–17. doi: 10.5194/nhess-2022-215.
    [33] WANG He, MOUCHE A, HUSSON R, et al. Indian ocean crossing swells: New insights from “fireworks” perspective using Envisat advanced synthetic aperture radar[J]. Remote Sensing, 2021, 13(4): 670. doi: 10.3390/rs13040670.
    [34] ZHANG Yanmin, WANG Yunhua, and XU Qiaohui. On the nonlinear mapping of an ocean wave spectrum into a new polarimetric SAR image spectrum[J]. Journal of Physical Oceanography, 2020, 50(11): 3109–3122. doi: 10.1175/JPO-D-20-0045.1.
    [35] PLESKACHEVSKY A, TINGS B, JACOBSEN S, et al. A system for near-real-time monitoring of the sea state using SAR satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5219018. doi: 10.1109/TGRS.2024.3419582.
    [36] HWANG P A and FOIS F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3640–3657. doi: 10.1002/2015JC010782.
    [37] WANG He, CHEN Yihong, XU Ying, et al. Deep learning merge of 2-D wave spectra from real and synthetic aperture radars[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 1505505. doi: 10.1109/LGRS.2025.3629683.
    [38] WANG He, MOUCHE A, HUSSON R, et al. Assessment of ocean swell height observations from Sentinel-1A/B wave mode against buoy in situ and modeling hindcasts[J]. Remote Sensing, 2022, 14(4): 862. doi: 10.3390/rs14040862.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-01
  • 修回日期:  2026-02-01

目录

    /

    返回文章
    返回