海上多模态数据资源体系——船舶红外可见光双模态目标检测数据集

徐从安 高龙 张驰 王金鹏 王飞 唐小明 蔡卓燃

徐从安, 高龙, 张驰, 等. 海上多模态数据资源体系——船舶红外可见光双模态目标检测数据集[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25144
引用本文: 徐从安, 高龙, 张驰, 等. 海上多模态数据资源体系——船舶红外可见光双模态目标检测数据集[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25144
XU Congan, GAO Long, ZHANG Chi, et al. Maritime multimodal data resource system—infrared-visible dual-modal dataset for ship detection[J]. Journal of Radars, in press. doi: 10.12000/JR25144
Citation: XU Congan, GAO Long, ZHANG Chi, et al. Maritime multimodal data resource system—infrared-visible dual-modal dataset for ship detection[J]. Journal of Radars, in press. doi: 10.12000/JR25144

海上多模态数据资源体系——船舶红外可见光双模态目标检测数据集

DOI: 10.12000/JR25144 CSTR: 32380.14.JR25144
基金项目: 国家自然科学基金(62271499),国家资助博士后研究人员计划(GZC20233554),指挥控制科学与工程教学立项课题(2024-XKJS-j05),泰山学者青年专家(tsqn202312258)
详细信息
    作者简介:

    徐从安,博士,副教授,主要研究方向为多源信息融合、智能信息处理与态势生成、天空基预警探测情报处理研究

    高 龙,博士,讲师,主要研究方向为机器学习、目标检测以及船舶识别

    张 驰,在读硕士,主要研究方向为遥感图像处理、目标检测

    王金鹏,在读博士,主要研究方向为目标检测、可见光红外融合目标检测等

    王 飞,博士,副研究员。主要研究方向为时空大数据分析挖掘、态势计算系统

    唐小明,博士,高工,主要研究方向为多系统人工智能、对海雷达总体及雷达数据分析

    蔡卓燃,博士,副教授,主要研究方向为频谱感知、无线信号模式识别

    通讯作者:

    高龙 gaolong14@nudt.edu.cn

    责任主编:王智睿 Corresponding Editor: WANG Zhirui

  • 中图分类号: TN911.73

Maritime Multimodal Data Resource System—Infrared-visible Dual-modal Dataset for Ship Detection

Funds: The National Natural Science Foundation of China (62271499), The China Postdoctoral Science Foundation (GZC20233554), Command and Control Science and Engineering Teaching Project (2024-XKJS-j05), and The TaiShan Scholars (tsqn202312258)
More Information
  • 摘要: 海上多模态数据资源体系是支撑雷达、合成孔径雷达(SAR)、光电等多传感器协同探测,进而实现目标精细感知的基础,对推动算法落地应用、提高海上目标监视能力具有重要意义。为此,以渤海某港口附近海域为试验区域,利用岸基、空基等平台搭载的SAR、雷达、可见光、红外摄像头等设备,采集海上目标多源数据,并通过自动关联配准与人工修正相结合的方式进行标注,针对不同任务特点整编形成了多个多模态关联数据集,以期构建面向任务的海上多模态数据资源体系。本文所发布多模态船舶图像数据集(DMSD)是该体系的重要组成部分,共包含可见光与红外两类模态图像2163对,涵盖云雨雾、逆光等多种条件,且通过仿射变换实现了模态间的图像配准。基于该数据集,该文在YOLO, CFT等算法上进行了实验验证,实验结果表明,该文数据集在YOLOv8算法上mAP50约为0.65,CFT算法上mAP50约为0.63,能够支撑相关学者开展双模态融合策略优化、复杂场景鲁棒性提升等研究。

     

  • 图  1  船舶可见光与红外图像

    Figure  1.  Fg1. RGB images and infrared images of ships

    图  2  不同海况不同目标条件下的图像

    Figure  2.  Images under different sea conditions and target conditions

    图  3  图像采集设备

    Figure  3.  Image acquisition equipment

    图  4  红外图像配准前后对比

    Figure  4.  Comparison of infrared image registration before and after

    图  5  labelimg界面

    Figure  5.  Interface of labelimg software

    图  6  两种标签格式

    Figure  6.  Two label formats

    图  7  数据集文件夹结构

    Figure  7.  Dataset folder structure

    表  1  部分公开数据集统计

    Table  1.   Statistics from some publicly available datasets

    数据集实例数量图像数量图像分辨率模态目标类型
    HRSC201629761070300x300到1500x900可见光船舶
    ShipRSImageNet34353435930x930可见光船舶
    FGSD56342612930×930可见光船舶
    ISDD30611284768×512到5056×5056红外船舶
    MassMIND223642900640×512红外船舶
    TNO Image Fusion Dataset261261对640×480或720×576双模态城市场景
    LLVIP14000309761920x1080、1280x720双模态行人
    DMSD(本文)1956721631920x1080、640x512双模态船舶
    下载: 导出CSV

    表  2  可见光与热成像相机参数

    Table  2.   Parameters of visible light and thermal imaging cameras

    设备类型 可见光相机 热成像相机
    分辨率 1920×1080 640×512
    视场角(°) 66.6~4 40.6
    帧率(fps) 30 30
    镜头焦距(mm) 6.83~119.94 13.5
    镜头光圈 f/2.8~f/11 f/1.0
    波长范围(μm) 可见光 8~14
    下载: 导出CSV

    表  3  不同算法实验结果

    Table  3.   Experimental results of different algorithms

    算法模型PrecisionRecallmAP50mAP50-95推理速度FPS
    YOLOv5n0.6570.5090.5320.19026.88
    CFT(YOLOv5l)0.7050.6440.6350.21617.25
    CFT(YOLOv5s)0.7250.5020.6240.26325.75
    FFODNet0.7300.5360.6360.26916.25
    SuperYOLO0.6990.6270.6040.20317.50
    YOLOv8n0.7530.5290.6540.28023.25
    YOLOv8x0.7240.5490.6460.27918.75
    下载: 导出CSV

    表  4  相同算法下不同模态实验结果

    Table  4.   Experimental results of different modes under the same algorithm

    算法模型可见光mAP50红外mAP50双模态mAP50
    YOLOv5n0.4890.6020.532
    YOLOv8n0.5310.6570.654
    SuperYOLO0.4500.6070.604
    下载: 导出CSV
  • [1] LIU Zikun, YUAN Liu, WENG Lubin, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]. The 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), Porto, Portugal, 2017: 324–331. doi: 10.5220/0006120603240331.
    [2] ZHANG Zhengning, ZHANG Lin, WANG Yue, et al. ShipRSImageNet: A large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458–8472. doi: 10.1109/JSTARS. 2021.3104230. doi: 10.1109/JSTARS.2021.3104230.
    [3] CHEN Kaiyan, WU Ming, LIU Jiaming, et al. FGSD: A dataset for fine-grained ship detection in high resolution satellite images[EB/OL]. https://arxiv. org/abs/2003.06832, 2020.
    [4] HAN Yaqi, LIAO Jingwen, LU Tianshu, et al. KCPNet: Knowledge-driven context perception networks for ship detection in infrared imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5000219. doi: 10.1109/TGRS. 2022.3233401. doi: 10.1109/TGRS.2022.3233401.
    [5] NIRGUDKAR S, DEFILIPPO M, SACARNY M, et al. MassMIND: Massachusetts maritime INfrared dataset[J]. The International Journal of Robotics Research, 2023, 42(1/2): 21–32. doi: 10.1177/027836 49231153020. doi: 10.1177/02783649231153020.
    [6] TOET A. TNO image fusion dataset[EB/OL]. https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029, 2022.
    [7] JIA Xinyu, ZHU Chuang, LI Minzhen, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]. IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, Canada, 2021: 3489–3497. doi: 10.1109/ICCVW54120.2021.00389.
    [8] LI Yiming, LI Zhiheng, CHEN Nuo, et al. Multiagent multitraversal multimodal self-driving: Open MARS dataset[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 22041–22051. doi: 10.1109/CVPR52733.2024.02081.
    [9] HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1037–1045. doi: 10.1109/CVPR.2015.7298706.
    [10] 苏丽, 崔世豪, 张雯. 基于改进暗通道先验的海上低照度图像增强算法[J]. 海军航空大学学报, 2024, 39(5): 576–586. doi: 10.7682/j.issn.2097- 1427.2024.05.007. doi: 10.7682/j.issn.2097-1427.2024.05.007.

    SU Li, CUI Shihao, and ZHANG Wen. An algorithm for enhancing low-light images at sea based on improved dark channel priors[J]. Journal of Naval Aviation University, 2024, 39(5): 576–586. doi: 10.7682/j.issn.2097-1427.2024.05.007.
    [11] 曾文锋, 李树山, 王江安. 基于仿射变换模型的图像配准中的平移、旋转和缩放[J]. 红外与激光工程, 2001, 30(1): 18–20,17. doi: 10.3969/j.issn. 1007-2276.2001.01.006. doi: 10.3969/j.issn.1007-2276.2001.01.006.

    ZENG Wenfeng, LI Shushan, and WANG Jiang’an. Translation, rotation and scaling changes in image registration based affine transformation model[J]. Infrared and Laser Engineering, 2001, 30(1): 18–20,17. doi: 10.3969/j.issn.1007-2276.2001.01.006.
    [12] 于乐凯, 曹政, 孙艳丽, 等. 海上舰船目标可见光/红外图像匹配方法[J]. 海军航空大学学报, 2024, 39(6): 755–764,772. doi: 10.7682/j.issn.2097- 1427.2024.06.013. doi: 10.7682/j.issn.2097-1427.2024.06.013.

    YU Lekai, CAO Zheng, SUN Yanli, et al. Visible and infrared images matching method for maritime ship targets[J]. Journal of Naval Aviation University, 2024, 39(6): 755–764,772. doi: 10.7682/j.issn.2097-1427.2024.06.013.
    [13] GOYAL P, DOLLÁR P, GIRSHICK R, et al. Accurate, large minibatch SGD: Training ImageNet in 1 hour[EB/OL]. https://arxiv.org/abs/1706.02677, 2018.
    [14] FANG Qingyun, HAN Dapeng, WANG Zhaokui. Cross-modality fusion transformer for multispectral object detection[EB/OL]. https://arxiv.org/abs/2111.00273, 2022.
    [15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
    [16] WANG Jinpeng, XU Cong’an, ZHAO Chunhui, et al. Multimodal object detection of UAV remote sensing based on joint representation optimization and specific information enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12364–12373. doi: 10.1109/JSTARS.2024.3373816.
    [17] ZHANG Jiaqing, LEI Jie, XIE Weiying, et al. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5605415. doi: 10.1109/TGRS.2023.3258666.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-31
  • 修回日期:  2026-01-24

目录

    /

    返回文章
    返回