众源数据辅助的高分辨率 SAR 影像控制点自动提取与校正方法研究

向俞明 白植达 陈锦杨 洪中华 刘世杰 童小华

向俞明, 白植达, 陈锦杨, 等. 众源数据辅助的高分辨率 SAR 影像控制点自动提取与校正方法研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25141
引用本文: 向俞明, 白植达, 陈锦杨, 等. 众源数据辅助的高分辨率 SAR 影像控制点自动提取与校正方法研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25141
XIANG Yuming, BAI Zhida, CHEN Jinyang, et al. Research on automatic control point extraction and correction method for high-resolution synthetic aperture radar imagery assisted by multi-source data[J]. Journal of Radars, in press. doi: 10.12000/JR25141
Citation: XIANG Yuming, BAI Zhida, CHEN Jinyang, et al. Research on automatic control point extraction and correction method for high-resolution synthetic aperture radar imagery assisted by multi-source data[J]. Journal of Radars, in press. doi: 10.12000/JR25141

众源数据辅助的高分辨率 SAR 影像控制点自动提取与校正方法研究

DOI: 10.12000/JR25141 CSTR: 32380.14.JR25141
基金项目: 国家自然科学基金(42221002, 42171432),上海市科技计划项目(2024CSJZN01300),中央高校基本科研业务费专项资金资助
详细信息
    作者简介:

    向俞明,博士,副教授,主要研究方向为SAR影像配准、遥感影像高精度定位测图

    白植达,博士生,主要研究方向为遥感影像定位平差

    陈锦杨,硕士生,主要研究方向为多模态影像匹配

    洪中华,博士,教授,主要研究方向为遥感影像全球测图

    刘世杰,博士,教授,主要研究方向为航天精准测绘遥感

    童小华,博士,教授/中国工程院院士,主要研究方向为航天测绘遥感与深空探测

    通讯作者:

    洪中华 zhhong@shou.edu.cn

    责任主编:张红 Corresponding Editor: ZHANG Hong

  • 中图分类号: TP751

Research on Automatic Control Point Extraction and Correction Method for High-resolution Synthetic Aperture Radar Imagery Assisted by Multi-source Data

Funds: The National Natural Science Foundation of China (42221002, 42171432),Shanghai Science and Technology Program Project (2024CSJZN01300), Special Fund for Basic Scientific Research Business Expenses of Central Universities
More Information
  • 摘要: 控制点作为遥感影像定位精度提升的核心基准,其空间分布特征与几何质量直接影响正射校正的可靠性,是保障多源影像融合、变化检测及定量反演精度的关键基础。针对传统角反射器布设成本高、实施难度大,难以满足全球应用需求的问题,以及现有异源控制点(如光学影像和激光测高数据)因与合成孔径雷达(SAR)影像存在显著模态差异,难以兼顾精度与鲁棒性的问题,该研究提出一种基于众源数据的高分辨率SAR影像控制点自动提取方法,并构建了基于控制片的高精度正射校正技术框架。该方法充分利用城市环境中广泛分布的杆状人造地物特性:在光学影像中,这类地物呈现本体-阴影协同结构特征,在SAR影像中则表现为十字形强散射响应。首先利用开源机场跑道数据校正谷歌光学影像,建立平面基准框架;进而通过光学-SAR影像匹配点与立体SAR影像匹配点的协同平差解算,实现不同升降轨立体SAR影像的初始定位优化;最终结合道路和停车场矢量数据提取感兴趣区域,采用信杂比检测算法识别强散射点,并通过点目标分析与立体定位技术获取控制点的三维空间坐标。基于控制点坐标对立体SAR影像的残余平面误差进行修正后,可生成不同升降轨SAR影像的控制片数据。通过采用多个区域的高分三号升降轨SAR影像开展控制点提取验证,结果表明:基于聚束模式立体SAR影像提取的控制点三维定位精度达亚米级,基于提取的控制点和控制片实现了测试影像的正射校正,通过角反射器和机载激光点云真值验证,结果发现测试影像定位精度提升显著,其中聚束模式定位误差为1.78像素,超精细条带模式为1.09像素,精细条带模式为0.82像素,较传统光学参考影像匹配校正方法精度提升了47.2%, 49.3%和37.4%。本研究创新性地引入众源信息辅助SAR控制点提取和升降轨SAR控制片构建,突破光学参考底图匹配校正的精度瓶颈,为高分辨率SAR影像精确定位与联合处理提供了可推广的新路径。

     

  • 图  1  众源数据辅助的SAR影像控制点自动提取算法流程图

    Figure  1.  Flowchart of the automatic extraction algorithm for GCP in SAR images assisted by multi-sourced data

    图  2  测试区域众源数据分布图

    Figure  2.  Distribution map of multi-sourced data in the study area

    图  3  本项目控制点构造对象—杆状结构图示(如红色矩形框)

    Figure  3.  The rod-shaped structures used as control points in this project are indicated by red rectangles

    图  4  基于控制片的SAR影像正射校正算法流程图

    Figure  4.  Flowchart of the orthorectification algorithm for SAR imagery based on control chips

    图  5  火奴鲁鲁(ID1)的升降轨控制片结果

    Figure  5.  Results of control chips for ascending and descending orbits in test area ID1

    图  6  安克雷奇(ID2)的升降轨控制片结果

    Figure  6.  Results of control chips for ascending and descending orbits in test area ID2

    图  7  马歇尔(ID3)的升降轨控制片结果

    Figure  7.  Results of control chips for ascending and descending orbits in test area ID3

    图  8  萨斯卡通(ID4)的升降轨控制片结果

    Figure  8.  Results of control chips for ascending and descending orbits in test area ID4

    图  9  兰开斯特(ID5)的升降轨控制片结果

    Figure  9.  Results of control chips for ascending and descending orbits in test area ID5

    图  10  待校正的SAR影像和用于评估的真值点位

    Figure  10.  SAR images to be rectified and ground truth points for evaluation

    图  11  SAR影像校正结果的箱线图

    Figure  11.  Box plot of SAR image correction results

    表  1  测试区域和众源数据信息

    Table  1.   The study area and multi-sourced data information

    测试区域 开源机场
    跑道
    道路和
    停车场矢量
    DEM 谷歌光学
    影像
    高分三号C波段立体SAR影像
    火奴鲁鲁(ID1) Airport Data
    (FAA)
    OpenStreet
    Map
    ≈10 m
    USGS
    ≈0.3 m
    RGB
    聚束/降轨/右侧视/38.2°/0.56 m/0.34 m 聚束/升轨/右侧视/36.7°/0.56 m/0.34 m
    安克雷奇(ID2) 聚束/降轨/右侧视/35.4°/0.56 m/0.34 m 聚束/升轨/右侧视/34.5°/0.56 m/0.33 m
    马歇尔(ID3) 聚束/降轨/右侧视/32.3°/0.56 m/0.33 m 聚束/升轨/右侧视/27.7°/0.56 m/0.31 m
    萨斯卡通(ID4) 聚束/降轨/右侧视/26.6°/0.56 m/0.31 m 聚束/升轨/右侧视/39.1°/0.56 m/0.34 m
    兰开斯特(ID5) 条带/降轨/右侧视/28.4°/1.12 m/1.73 m 条带/升轨/右侧视/42.5°/1.12 m/1.70 m
    下载: 导出CSV

    表  2  测试区域提取到的控制点精度评估结果以及控制点数量

    Table  2.   Accuracy assessment results of extracted control points in the test areas, and the number of control points

    测试区域 平面精度RMSEh 高程精度RMSEv NGCP
    火奴鲁鲁(ID1) 0.85 m 0.47 m 124
    安克雷奇(ID2) 0.87 m 0.26 m 26
    马歇尔(ID3) 0.69 m 0.31 m 239
    萨斯卡通(ID4) 0.55 m 0.26 m 53
    兰开斯特(ID5) 1.35 m 1.02 m 155
    下载: 导出CSV

    表  3  待校正的SAR影像成像参数信息

    Table  3.   The imaging parameter information of the SAR image to be rectified

    测试区域卫星型号成像模式成像视角轨道/侧视方向采样间隔影像尺寸(像素)评估真值
    火奴鲁鲁(ID1-1)高分三号聚束31.8°降轨/右0.56m/0.33m12148×32226机载激光点云
    火奴鲁鲁ID1-2)聚束39.6°降轨/左0.56m/0.34m16672×29190
    兰开斯特(ID5-1)超精细条带28.4°升轨/右1.12m/1.73m14297×21550角反射器
    兰开斯特(ID5-2)精细条带II39.2°降轨/右2.25m/4.82m32026×24656
    下载: 导出CSV

    表  4  所有算法在4组测试影像上的定位误差(RMSE,像素)以及平均处理时间

    Table  4.   Positioning errors (RMSE, pixels) and average processing time of all algorithms on four sets of test images

    测试区域 本文算法 基于SAR原始定位参数和DEM校正 升降轨SAR连接点匹配平差校正 SFOC24 G2L18
    火奴鲁鲁(ID1-1) 2.07 27.37 15.39 4.08 3.18
    火奴鲁鲁(ID1-2) 1.55 19.24 10.36 2.78 2.12
    兰开斯特(ID5-1) 1.09 28.77 14.16 2.15 1.50
    兰开斯特(ID5-2) 0.82 13.37 4.35 1.31 1.83
    平均处理时间(s) 72.3 14.5 65.9 57.2 85.9
    下载: 导出CSV

    表  5  消融实验对比结果(包括控制点平面精度(m)和高程精度(m),w/o代表去除)

    Table  5.   The comparison results of ablation study (including positioning error (m) and elevation error (m))

    消融方法 本文算法 w/o 机场跑道
    坐标
    w/o 连接点
    平差
    w/o 立体交会
    解算
    平面精度RMSEh 0.85 5.19 1.92 1.68
    高程精度RMSEv 0.47 1.44 1.35 1.52
    下载: 导出CSV
  • [1] 仇晓兰, 胡玉新, 上官松涛, 等. 遥感卫星大数据高精度一体化处理技术[J]. 大数据, 2022, 8(2): 15–27. doi: 10.11959/j.issn.2096-0271.2022013.

    QIU Xiaolan, HU Yuxin, SHANGGUAN Songtao, et al. Remote sensing satellite big data high-precision integration processing technology[J]. Big Data Research, 2022, 8(2): 15–27. doi: 10.11959/j.issn.2096-0271.2022013.
    [2] 向俞明, 滕飞, 王林徽, 等. 基于快速异源配准的高分辨率SAR影像海岛区域正射校正[J]. 雷达学报(中英文), 2024, 13(4): 866–884. doi: 10.12000/JR24022.

    XIANG Yuming, TENG Fei, WANG Linhui, et al. Orthorectification of high-resolution SAR images in island regions based on fast multimodal registration[J]. Journal of Radars, 2024, 13(4): 866–884. doi: 10.12000/JR24022.
    [3] EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy—toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 661–671. doi: 10.1109/TGRS.2010.2060264.
    [4] RAGGAM H, PERKO R, GUTJAHR K, et al. Accuracy assessment of 3D point retrieval from TerraSAR-X data sets[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [5] NITTI D O, MOREA A, NUTRICATO R, et al. Automatic GCP extraction with high resolution COSMO-SkyMed products[C]. SPIE 10003, SAR Image Analysis, Modeling, and Techniques XVI, Edinburgh, United Kingdom, 2016: 1000302. doi: 10.1117/12.2241281.
    [6] MONTAZERI S, GISINGER C, EINEDER M, et al. Automatic detection and positioning of ground control points using TerraSAR-X multiaspect acquisitions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2613–2632. doi: 10.1109/TGRS.2017.2769078.
    [7] KRAUß T, KURZ F, and RUNGE H. Automatic pole detection in aerial and satellite imagery for precise image registration with SAR ground control points[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, V–1–2022: 85–91. doi: 1 0.5194/isprs-annals-V-1-2022-85-2022.
    [8] CHANDELIER L, COEURDEVEY L, BOSCH S, et al. A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, V–2–2020: 15–23. doi: 10.5194/isprs-annals-V-2-2020-15-2020.
    [9] XI Mengrong, FENG Yongjiu, LEI Zhenkun, et al. Geometric calibration of large-scale SAR images using wind turbines as ground control points[J]. International Journal of Digital Earth, 2024, 17(1): 2385080. doi: 10.1080/17538947.2024.2385080.
    [10] 王密, 韦钰, 杨博, 等. ICESat-2/ATLAS全球高程控制点提取与分析[J]. 武汉大学学报: 信息科学版, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.

    WANG Mi, WEI Yu, YANG Bo, et al. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.
    [11] LI Binbin, XIE Huan, LIU Shijie, et al. A high-quality global elevation control point dataset from ICESat-2 altimeter data[J]. International Journal of Digital Earth, 2024, 17(1): 2361724. doi: 10.1080/17538947.2024.2361724.
    [12] 余洋, 靳国旺, 熊新, 等. 多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取[J]. 雷达学报, 2023, 12(1): 64–75. doi: 10.12000/JR22134.

    YU Yang, JIN Guowang, XIONG Xin, et al. SAR elevation control point extraction combining multistrategy ATLAS data preference and image matching[J]. Journal of Radars, 2023, 12(1): 64–75. doi: 10.12000/JR22134.
    [13] HUBER M, WESSEL B, and ROTH A. The TerraSAR-X orthorectification service and its benefit for land use applications[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 1922–1925. doi: 10.1109/IGARSS.2006.497.
    [14] MERKLE N, LUO Wenjie, AUER S, et al. Exploiting deep matching and SAR data for the geo-localization accuracy improvement of optical satellite images[J]. Remote Sensing, 2017, 9(6): 586. doi: 10.3390/rs9060586.
    [15] JIAO Niangang, WANG Feng, YOU Hongjian, et al. A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 377–388. doi: 10.1016/j.isprsjprs.2020.09.017.
    [16] CHENG Qian, WANG Taoyang, LI Xin, et al. Geometric positioning accuracy improvement method of micro SAR satellites with large positioning errors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 14949–14964. doi: 10.1109/JSTARS.2024.3430847.
    [17] 张祖勋, 段延松, 陶鹏杰. 从控制点到控制片[J]. 武汉大学学报: 信息科学版, 2023, 48(11): 1715–1723. doi: 10.13203/j.whugis20230373.

    ZHANG Zuxun, DUAN Yansong, and TAO Pengjie. From ground control point to digital control photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715–1723. doi: 10.13203/j.whugis20230373.
    [18] XIANG Yuming, WANG Xuanqi, WANG Feng, et al. A global-to-local algorithm for high-resolution optical and SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215320. doi: 10.1109/TGRS.2023.3309855.
    [19] XIANG Yuming, JIAO Niangang, LIU Rui, et al. A geometry-aware registration algorithm for multiview high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234818. doi: 10.1109/TGRS.2022.3205382.
    [20] GRODECKI J D and DIAL G. Block adjustment of high-resolution satellite images described by rational polynomials[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 59–68. doi: 10.14358/PERS.69.1.59.
    [21] FRASER C S and HANLEY H B. Bias compensation in rational functions for IKONOS satellite imagery[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 53–57. doi: 10.14358/PERS.69.1.53.
    [22] 徐凯. 星载SAR高精度几何处理方法研究及应用[D]. [博士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.002502.

    XU Kai. Research on high precision geometric processing methods and application of spaceborne SAR[D]. [Ph.D. dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.002502.
    [23] WANG Jian, CHAI Huiming, LI Xiaoshuai, et al. Improving mountainous DSM accuracy through an innovative opposite-side radargrammetry algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 6641–6653. doi: 10.1109/JSTARS.2025.3543430.
    [24] YE Yuanxin, ZHU Bai, TANG Tengfeng, et al. A robust multimodal remote sensing image registration method and system using steerable filters with first-and second-order gradients[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 331–350. doi: 10.1016/j.isprsjprs.2022.04.011.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-28
  • 修回日期:  2025-11-15

目录

    /

    返回文章
    返回