广义高斯噪声背景下基于低比特量化的分布式MIMO雷达运动目标检测方法

杜群锋 程旭 王福来 庞晨 吴云韬

杜群锋, 程旭, 王福来, 等. 广义高斯噪声背景下基于低比特量化的分布式MIMO雷达运动目标检测方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25129
引用本文: 杜群锋, 程旭, 王福来, 等. 广义高斯噪声背景下基于低比特量化的分布式MIMO雷达运动目标检测方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25129
DU Qunfeng, CHENG Xu, WANG Fulai, et al. Moving target detection using distributed MIMO radar based on low-bit quantization under the background of generalized gaussian noise[J]. Journal of Radars, in press. doi: 10.12000/JR25129
Citation: DU Qunfeng, CHENG Xu, WANG Fulai, et al. Moving target detection using distributed MIMO radar based on low-bit quantization under the background of generalized gaussian noise[J]. Journal of Radars, in press. doi: 10.12000/JR25129

广义高斯噪声背景下基于低比特量化的分布式MIMO雷达运动目标检测方法

DOI: 10.12000/JR25129 CSTR: 32380.14.JR25129
基金项目: 国家自然科学基金(62401589),湖北省自然科学基金(2024AFB653),湖北省教育厅科学研究计划重点项目(D20241503)
详细信息
    作者简介:

    杜群锋,硕士生,主要研究方向为雷达信号处理等

    程 旭,博士,副教授,主要研究方向为雷达极化信息处理、弹道目标识别等

    王福来,博士,讲师,主要研究方向为雷达极化信息处理、雷达波形设计与电子对抗技术

    庞 晨,博士,副研究员,主要研究方向为极化雷达信息处理与电子对抗

    吴云韬,博士,教授,主要研究方向为雷达信号处理、阵列信号处理等

    通讯作者:

    程旭 xu.cheng@wit.edu.cn

  • 责任主编:严俊坤 Corresponding Editor: YAN Junkun
  • 中图分类号: TN95

Moving Target Detection Using Distributed MIMO Radar Based on Low-bit Quantization Under the Background of Generalized Gaussian noise

Funds: The National Natural Science Foundation of China (62401589), Natural Science Foundation of Hubei Province (2024AFB653), Key Project of Scientific Research Program of Hubei Provincial Department of Education (D20241503)
More Information
  • 摘要: 多通道观测数据信号级协同检测是分布式MIMO雷达目标检测的关键技术之一,但该技术在实施过程中需消耗大量系统资源用于数据计算与传输,使其在实际工程应用中面临诸多挑战。鉴于低比特量化技术可显著降低分布式系统的通信传输代价和计算资源消耗,该文研究了广义高斯噪声背景下基于低比特量化的MIMO雷达目标检测问题。分别基于广义似然比检验(GLRT)与广义Rao (G-Rao)检验设计了相应的检测器:前者需要对目标反射系数与多普勒频率进行最大似然估计;后者基于得分函数直接构造统计量,避免冗余参数搜索,有效降低计算复杂度。此外,为改善检测性能,运用动态规划(DP)算法对量化门限进行优化。实验结果表明:与GLRT方法相比,G-Rao检测器的计算效率更高;与均匀量化门限相比,门限优化可有效提高对目标的检测性能;与粒子群优化等现有算法( PSOA)相比,DP的计算复杂度更低。

     

  • 图  1  分布式MIMO雷达工作场景

    Figure  1.  Operational scenarios of distributed MIMO radar

    图  2  分布式MIMO雷达位置布置场景

    Figure  2.  Deployment Scenarios of Distributed MIMO Radar

    图  3  不同量化位数下GLRT/G-Rao检验ROC曲线($ P_{D_0} $表示检测概率,$ P_{F_0} $表示虚警概率)

    Figure  3.  ROC curves of the GLRT and G-Rao tests under different numbers of quantization bits. ($ P_{D_0} $ denotes the probability of detection, $ P_{F_0} $ denotes the probability of false alarm)

    图  4  检测概率-SNR曲线($ b = 2 $, $ P_{F_0} = 5\times {10^{ - 2}} $与$ P_{F_0} = 5\times {10^{ - 3}} $)

    Figure  4.  Probability of Detection versus SNR curve ($ b = 2 $, $ P_{F_0} = 5\times {10^{ - 2}} $, and $ P_{F_0} = 5\times {10^{ - 3}} $)

    图  5  门限优化量化和门限均匀量化对应的检测性能对比

    Figure  5.  Comparison of the detection performance between threshold-optimized quantization and threshold-uniform quantization

    图  6  一定传输误码率条件下不同检测方法的ROC曲线($ P_e = 0.2 $)

    Figure  6.  ROC curves of different detection methods under a given bit error rate (BER).($ P_e = 0.2 $)

    图  7  雷达节点场景2下GLRT/G-Rao方法的ROC曲线

    Figure  7.  ROC curves of the GLRT and G-Rao methods for radar node scenario 2

    1  拟牛顿法求解最大似然估计

    1.   Quasi-Newton method for maximum likelihood estimation

     1. 初始化$ \theta _n^{(0)} $(令$ \beta _n^{(0)} = 0 $,$ f_d^{n(0)} = 0 $),近似Hessian矩阵$ {{\boldsymbol{B}}^{(0)}} = {\boldsymbol{I}} $。
     2. 每次迭代$ k = 0,1,2,\cdots $,计算当前梯度$ {{\boldsymbol{g}}^{(k)}} = \nabla _{{\theta _n}}^{(k)} $;
     解线性方程$ {{\boldsymbol{B}}^{(k)}}{{\boldsymbol{d}}^{(k)}} = + {{\boldsymbol{g}}^{(k)}} $,得到上升方向$ {{\boldsymbol{d}}^{(k)}} $;
     作一维精确/近似线搜索,找步长$ {\alpha }^{(k)} $使$ L({\boldsymbol{\theta}} _n^{(k)} + \alpha {{\boldsymbol{d}}^{(k)}}) $;
     更新参数$ {{\boldsymbol{\theta}} }_{n}^{(k+)}={{\boldsymbol{\theta }}}_{n}^{(k)}+{{{\alpha }}}^{(k)}{{\boldsymbol{d}}}^{(k)} $并计算$ {\boldsymbol{s}}_n^{(k)} = \theta _n^{(k + 1)} - \theta _n^{(k)},\;{\boldsymbol{y}}_n^{(k)} = {{\boldsymbol{g}}^{(k + 1)}} - {{\boldsymbol{g}}^k} $,得到
     $ {{\boldsymbol{B}}^{(k + 1)}} = {{\boldsymbol{B}}^{(k)}} - \dfrac{{{{\boldsymbol{B}}^{(k)}}{{\boldsymbol{s}}^{(k)}}{{\boldsymbol{s}}^{(k) \top }}{{\boldsymbol{B}}^{(k)}}}}{{{{\boldsymbol{s}}^{(k) \top }}{{\boldsymbol{B}}^{(k)}}{{\boldsymbol{s}}^{(k)}}}} + \dfrac{{{{\boldsymbol{y}}^{(k)}}{{\boldsymbol{y}}^{(k) \top }}}}{{{{\boldsymbol{y}}^{(k) \top }}{{\boldsymbol{s}}^{(k)}}}} $
     3. 检查收敛:若$ \Vert {{\boldsymbol{g}}}^{(k+1)}{\Vert }_{2} $或$ \Vert {{\boldsymbol{s}}}^{(k)}{\Vert }_{2}\le $$ \varepsilon $, $ (\varepsilon > 0) $,则输出结果$ {\boldsymbol{\theta}} _n^* = {[\beta _n^{R*},\beta _n^{I*},f_d^{n*}]^{\rm T}} $
    下载: 导出CSV

    2  采用PSOA算法优化量化门限$ \tau $

    2.   Optimization of the quantization threshold $ \tau $ using the PSO algorithm

     输入 $ \tau_{\text{max,}}q,M,v_{{\mathrm{tol}}},\omega ,c_1,c_2 $
     输出 $ {\tau ^*} = {{\mathrm{s}}_{\rm{best}}^l} $全局最优解
     步骤1. 初始化阶段
      步骤1.1 对于每个粒子$ m \in \{ 1,2,\cdots,M\} $
      步骤1.2 随机生成初始位置$ \tau _m^0 $和速度$ v_m^0 $
      步骤1.3 计算目标函数值$ c(\tau _m^0) $
      步骤1.4 设置个体最优$ {\mathrm{p}}_{{\rm{best}}m}^0 $
     步骤2. 迭代更新阶段
      步骤2.1 迭代次数$ l = 0 \sim L\max - 1 $
    粒子$ m \in \{ 1,2,...,M\} $生成随机数$ r1,r2 \sim U(0,1 $)
      步骤2.2 更新速度
    $ v_m^{l + 1} = w \cdot v_m^l + {c_1}{r_1}({p_{{\text{best}},m}} - \tau _m^l) + {c_2}{r_2}({g_{{\text{best}}}} - \tau _m^l) $
      步骤2.3 更新位置
    $ \tau _m^{l + 1} = \tau _m^l + v_m^{l + 1} $
      步骤2.4 位置约束处理
      如果$ |\tau _m^{l + 1}| > \tau_{\text{max}} $
    $ \tau _m^{l + 1} = {\mathrm{sign}}(\tau _m^{l + 1}) \cdot \tau_{\max} $
      步骤2.5 计算新目标值$ c(\tau _m^{l + 1}) $
      更新个体最优
      如果$ c(\tau _m^{l + 1}) > c({\mathrm{p}}_{{\rm{best}}m}^l) $
     则$ {\mathrm{p}}_{{\rm{best}}m}^l = \tau _m^{l + 1} $
     由(46)更新全局最优
     步骤3. 返回$ {\tau ^*} = {{\mathrm{s}}_{\rm{best}}^l} $
    下载: 导出CSV

    3  采用DP算法优化量化门限$ \tau $

    3.   Optimization of the quantization threshold $ \tau $ using the DP algorithm

     输入 $ \tau_{\text{max}},q,M,L,T_0 $
     输出 $ {\tau ^*} = {\mathrm{Taubest}} $全局最优解
     步骤1. 网格划分
       将$ [ - \tau_{\max} ,\tau_{\max} ] $等分为$ {\tau _{{\mathrm{grid}}}}[1..L] $
     步骤2. 预计算G矩阵(量化相关参数)
       计算所有量化组合的G值:$ G_{\mathrm{mat}} $
       矩阵所有元素和:$ G_{\mathrm{sum}} $
     步骤3. 计算每个区间$ (i,j) $的贡献$ C\left( {i,j} \right) $
       第一层遍历从$ i = 1 $到L
       第二层遍历从$ j = i + 1 $到L
        基于广义高斯分布和$ G_{\mathrm{sum}} $计算区间贡献值$ C\left( {i,j} \right) $
     步骤4. 动态规划求解最优门限序列
     初始化DP表和回溯表$ {\mathrm{Back}}\left( {m,j} \right) $
       $ D\left( {m,j} \right) = {\max _{1 \le k < j}}\{ D\left( {m - 1,k} \right) + C\left( {k,j} \right)\} $ 记录最大
       值的动态规划表
       $ {\mathrm{Back}}(m,j) $记录路径的回溯表
     步骤5. 递推填充DP表
       对于当前门限数量m遍历从2到$T_0 + 1$
       第二层遍历从当前位置$j = m$到L:
       更新$ D\left( {m,j} \right) $和$ {\mathrm{Back}}\left( {m,j} \right) $(选择前驱最优解)
     步骤6. 回溯提取最优解
       从最大位置开始,沿$ {\mathrm{Back}} $追踪
       $ {\mathrm{Taubest}} $ = $ {\mathrm{DP}} $表最后一行的最大值
       $ {\mathrm{Taubest}} $ = 通过$ {\mathrm{Back}} $表回溯得到的最优门限序列
       输出:最优门限$ {\tau ^*} = {\mathrm{Taubest}} $
    下载: 导出CSV

    表  1  PSOA, DP算法优化门限收敛时间

    Table  1.   Convergence time of threshold optimization by PSOA and DP algorithms

    量化位数 PSOA算法 DP算法
    2比特 2.3 s 0.6 s
    3比特 10.3 s 1.7 s
    下载: 导出CSV
  • [1] YANG Shixing, YI Wei, and JAKOBSSON A. Multitarget detection strategy for distributed MIMO radar with widely separated antennas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5113516. doi: 10.1109/TGRS.2022.3175046.
    [2] WANG Mingxing, LI Xiaolong, GAO Longji, et al. Signal accumulation method for high-speed maneuvering target detection using airborne coherent MIMO radar[J]. IEEE Transactions on Signal Processing, 2023, 71: 2336–2351. doi: 10.1109/TSP.2023.3286954.
    [3] 张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10(6): 970–981. doi: 10.12000/JR21062.

    ZHANG Guoxin, YI Wei, and KONG Lingjiang. Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10(6): 970–981. doi: 10.12000/JR21062.
    [4] FISHLER E, HAIMOVICH A, BLUM R S, et al. Spatial diversity in radars–models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823–838. doi: 10.1109/TSP.2005.862813.
    [5] KANG B S and LEE K. Ultra-high-resolution spaceborne and squint SAR imaging for height-variant geometry using polynomial range model[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 375–393. doi: 10.1109/TAES.2022.3187383.
    [6] DE S and BAZIL RAJ A A. A survey on photonics technologies for radar applications[J]. Journal of Optics, 2023, 52(1): 90–119. doi: 10.1007/s12596-022-00897-x.
    [7] HAN K, KANG S, and HONG S. Sub-Nyquist sampling OFDM radar[J]. IEEE Transactions on Radar Systems, 2023, 1: 669–680. doi: 10.1109/TRS.2023.3333430.
    [8] JIN Benzhou, ZHU Jiang, WU Qihui, et al. One-bit LFMCW radar: Spectrum analysis and target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2732–2750. doi: 10.1109/TAES.2020.2978374.
    [9] JING Xinchen, SU Hongtao, JIA Congyue, et al. Fusion detection in distributed MIMO radar under hybrid-order Gaussian model[J]. Signal Processing, 2024, 214: 109256. doi: 10.1016/j.sigpro.2023.109256.
    [10] WANG Mingxing, LI Xiaolong, ZHANG Zerui, et al. Coherent integration and parameter estimation for high-speed target detection with bistatic MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5107915. doi: 10.1109/TGRS.2023.3298825.
    [11] PARK J, PARK S, KIM D H, et al. Leakage mitigation in heterodyne FMCW radar for small drone detection with stationary point concentration technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 1221–1232. doi: 10.1109/TMTT.2018.2889045.
    [12] XIAO Yuhang, RAMÍREZ D, SCHREIER P J, et al. One-bit target detection in collocated MIMO radar and performance degradation analysis[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9363–9374. doi: 10.1109/TVT.2022.3178285.
    [13] VISWANATHAN R and VARSHNEY P K. Distributed detection with multiple sensors Part I. Fundamentals[J]. Proceedings of the IEEE, 1997, 85(1): 54–63. doi: 10.1109/5.554208.
    [14] KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Hoboken, USA: Prentice Hall, 1998: 1545–1597.
    [15] ZAYYANI H, HADDADI F, and KORKI M. One-bit spectrum sensing in cognitive radio sensor networks[J]. Circuits, Systems, and Signal Processing, 2020, 39(5): 2730–2743. doi: 10.1007/s00034-019-01274-z.
    [16] YANG Shixing, YI Wei, JAKOBSSON A, et al. Weak signal detection with low-bit quantization in colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2023, 71: 447–460. doi: 10.1109/TSP.2023.3246233.
    [17] XI Feng, XIANG Yijian, ZHANG Zhen, et al. Joint angle and doppler frequency estimation for MIMO radar with one-bit sampling: A maximum likelihood-based method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4734–4748. doi: 10.1109/TAES.2020.3000841.
    [18] NI Lihua, ZHANG Di, SUN Yimao, et al. Detection and localization of one-bit signal in multiple distributed subarray systems[J]. IEEE Transactions on Signal Processing, 2023, 71: 2776–2791. doi: 10.1109/TSP.2023.3300634.
    [19] GAO Fei, GUO Lili, LI Hongbin, et al. Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(4): 2032–2042. doi: 10.1109/TWC.2014.2379279.
    [20] CHENG Xu, CIUONZO D, and ROSSI P S. Multibit decentralized detection through fusing smart and dumb sensors based on Rao test[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1391–1405. doi: 10.1109/TAES.2019.2936777.
    [21] CHENG Xu, CIUONZO D, ROSSI P S, et al. Multi-bit & sequential decentralized detection of a noncooperative moving target through a generalized Rao test[J]. IEEE Transactions on Signal and Information Processing over Networks, 2021, 7: 740–753. doi: 10.1109/TSIPN.2021.3126930.
    [22] 杨诗兴, 张国鑫, 梁雲飞, 等. 动平台分布式雷达系统动目标低比特数据检测算法[J]. 雷达学报(中英文), 2024, 13(3): 584–600. doi: 10.12000/JR23240.

    YANG Shixing, ZHANG Guoxin, LIANG Yunfei, et al. Moving targets detection with low-bit quantization in distributed radar on moving platforms[J]. Journal of Radars, 2024, 13(3): 584–600. doi: 10.12000/JR23240.
    [23] JING Xinchen, SU Hongtao, LI Ze, et al. Weak moving target detection in distributed MIMO radar with hybrid data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 9291–9306. doi: 10.1109/TAES.2024.3442777.
    [24] LU Jing, ZHOU Shenghua, and PENG Xiaojun. Distributed detection with generalized locally most powerful fusion of compressed local multiframe test statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5342–5362. doi: 10.1109/TAES.2023.3257823.
    [25] ZHANG Qian, VARSHNEY P K, and WESEL R D. Optimal bi-level quantization of i.i.d. sensor observations for binary hypothesis testing[J]. IEEE Transactions on Information Theory, 2002, 48(7): 2105–2111. doi: 10.1109/TIT.2002.1013153.
    [26] WANG Zhen, HE Qian, and BLUM R S. Target detection using quantized cloud MIMO radar measurements[J]. IEEE Transactions on Signal Processing, 2022, 70: 1–16. doi: 10.1109/TSP.2021.3129364.
    [27] YANG Shixing, LAI Yangming, JAKOBSSON A, et al. Hybrid quantized signal detection with a bandwidth-constrained distributed radar system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 7835–7850. doi: 10.1109/TAES.2023.3296344.
    [28] FAUZI N I H, MUSA Z, and ZULKIFLI N S A. Midrange exploration exploitation searching particle swarm optimization in dynamic environment[C]. The 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), Pekan, Malaysia, 2021: 649–654. doi: 10.1109/ICSECS52883.2021.00124.
    [29] MENG Zhenyu, ZHONG Yuxin, MAO Guojun, et al. PSO-sono: A novel PSO variant for single-objective numerical optimization[J]. Information Sciences, 2022, 586: 176–191. doi: 10.1016/j.ins.2021.11.076.
    [30] Steven M.Kay. Kay Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory[M]. Englewood Cliffs, NJ, USA: Prentice-Hall, Jan. 1998.
    [31] DAVIES R B. Hypothesis testing when a nuisance parameter is present only under the alternative[J]. Biometrika, 1987, 74(1): 33–43. doi: 10.1093/biomet/74.1.33.
    [32] CIUONZO D, ROSSI P S, and WILLETT P. Generalized Rao test for decentralized detection of an uncooperative target[J]. IEEE Signal Processing Letters, 2017, 24(5): 678–682. doi: 10.1109/LSP.2017.2686377.
    [33] CIUONZO D, CHAWLA A, and ROSSI P S. Non-cooperative distributed detection via federated sensor networks[C]. The 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149573.
    [34] LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8.
    [35] CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086.
    [36] STORN R and PRICE K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328.
    [37] MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-11-14

目录

    /

    返回文章
    返回