相参FDA雷达搜索成像一体化波形设计方法

于雷 余若峰 何峰 董臻 粟毅 张犇

于雷, 余若峰, 何峰, 等. 相参FDA雷达搜索成像一体化波形设计方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25127
引用本文: 于雷, 余若峰, 何峰, 等. 相参FDA雷达搜索成像一体化波形设计方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25127
YU Lei, YU Ruofeng, HE Feng, et al. Deep learning-based integrated search-imaging waveform design for coherent frequency diverse array radar[J]. Journal of Radars, in press. doi: 10.12000/JR25127
Citation: YU Lei, YU Ruofeng, HE Feng, et al. Deep learning-based integrated search-imaging waveform design for coherent frequency diverse array radar[J]. Journal of Radars, in press. doi: 10.12000/JR25127

相参FDA雷达搜索成像一体化波形设计方法

DOI: 10.12000/JR25127 CSTR: 32380.14.JR25127
基金项目: 国防科技大学青年自主创新基金(ZK25-28)
详细信息
    作者简介:

    于 雷,博士,讲师,主要研究方向为数字阵列雷达多维调制与信号处理技术

    余若峰,博士,主要研究方向为雷达波形优化设计

    何 峰,博士,研究员,主要研究方向为SAR系统设计与信号处理技术

    董 臻,博士,研究员,主要研究方向为SAR系统设计与信号处理技术

    粟 毅,博士,教授,主要研究方向为雷达信号处理与遥感技术

    张犇,博士,博士生,主要研究方向为频率分集阵列信号处理技术

    通讯作者:

    何峰 hefeng@nudt.edu.cn

    责任主编:兰岚 Corresponding Editor: LAN Lan

  • 中图分类号: TN958

Deep Learning-based Integrated Search-imaging Waveform Design for Coherent Frequency Diverse Array Radar

Funds: Innovation Research Foundation of NUDT(ZK25-28)
More Information
  • 摘要: 相参频率分集阵列(FDA)雷达具有系统结构简单、波束扫描灵活和发射自由度高等优点,在宽覆盖对空探测任务中展现出巨大潜力,但固有的波束扫描机制导致其在特定方向的驻留时间缩短,从而限制了传统宽带波形成像时的距离分辨率。为解决广域搜索与高分辨率成像之间的内在矛盾,该文提出了一种基于深度学习的相参FDA搜索成像一体化波形设计方法。该方法利用相参FDA多自由度灵活发射的优势,在保证宽覆盖搜索能力的同时,为多个感兴趣区域(ROI)定制化地设计波形、带宽、发射增益等多维发射资源。为了解决基带波形设计中恒模与相关性双重约束的非凸优化问题,该文构建了以残差自编码网络为核心优化器,旨在直接学习并建立从初始相位空间到满足预设性能准则的最优相位空间的高维非线性映射关系。该网络能够高效地生成一组在多个ROI方向上同时具备低自相关旁瓣和低互相关电平的相位编码子波形。仿真结果验证了所提方法的有效性,表明其设计的波形在同步执行搜索与多目标成像任务时,(相比于窄带搜索模式)能够在指定ROI方向同时获得发射增益和距离分辨率提升,且自相关与互相关性能相较于传统方法具有显著优势,为提高现代雷达系统的同时多任务探测能力提供了一种有效途径。

     

  • 图  1  相参FDA雷达收发阵列模型

    Figure  1.  Observation geometry of coherent FDA radar

    图  2  相参FDA波束扫描的“空-时”滑窗效应示意图

    Figure  2.  Space-time windowing effect induced by coherent FDA radar beamscanning

    图  3  相参FDA雷达接收端系统结构框图

    Figure  3.  Structure of coherent FDA radar receiver

    图  4  相参FDA雷达窄带宽覆盖搜索模式

    Figure  4.  Searching mode of coherent FDA radar with narrowband and wide coverage

    图  5  相参FDA雷达宽带多目标成像模式

    Figure  5.  Multi-targets imaging mode of coherent FDA radar with wideband and ROI coverage

    图  6  多目标成像模式下的相参FDA雷达探测效果示意图

    Figure  6.  Visualization of multi-targets imaging mode based on coherent FDA radar

    图  7  残差自编码(RAE)网络结构示意图

    Figure  7.  Visualization of Residual Auto-Encoder network

    图  8  第1个发射通道的设计波形时频图

    Figure  8.  Spectrogram of the designed waveform at the first transmit element

    图  9  根据ROI设计波形的空间覆盖能力分析

    Figure  9.  Spatial coverage analysis of the designed waveform according to ROIs

    图  10  3个ROI方向上的“距离-角度”模糊函数

    Figure  10.  Range-angle ambiguity functions in three different ROIs

    图  11  3个ROI方向上距离角度模糊函数的一维距离向剖面

    Figure  11.  The range profile of range-angle ambiguity functions in three different ROIs

    图  12  全脉冲匹配与子脉冲匹配在3个ROI方向上的一维距离向剖面对比

    Figure  12.  Comparisons between full-pulse compression and subpulse compression in three different ROIs

    图  13  $ \Delta \theta $分别取0.5°和1°时,3个ROI方向上一维距离像剖面的对比

    Figure  13.  Comparisons of range profiles in three different ROIs when $ \Delta \theta \text{=0}{\text{.5}}^{\circ } $ and $ {\text{1}}^{\circ } $

    图  14  APSL、峰值增益损失随角度偏差$ \Delta \theta $变化的统计曲线

    Figure  14.  Statistical variations of APSL and peak gain loss induced by angle bias $ \Delta \theta $

    图  15  所提RAE算法与CON算法、Multi-CAN算法在3个ROI方向上的一维距离向剖面对比

    Figure  15.  Comparisons of range profiles between the RAE, CON and Multi-CAN in three different ROI directions

    图  16  非ROI区间$ {\theta }_{0}=-{10}^{\circ },{15}^{\circ } $对应的“距离-角度”模糊函数及距离向剖面

    Figure  16.  Range-angle ambiguity functions and range profiles when $ {\theta }_{0}=-{10}^{\circ },{15}^{\circ } $ (outside of ROI)

    表  1  多目标成像模式的相参FDA雷达系统参数设计方法

    Table  1.   System design of multi-targets imaging mode based on coherent FDA radar

     输入:相参FDA发射/接收阵元数$ \text{M} $、$ \text{N} $,阵元间距d,参考载频$ {f}_{\rm c} $,脉冲宽度$ {T}_{p} $,搜索阶段确定的L个ROI方向$ \boldsymbol{{\varTheta }}=\left[{{\varTheta }}_{\text{1}},{{\varTheta }}_{2},\cdots,{{\varTheta }}_{L}\right] $。
     初始化:阵元间载频差$ \Delta {f}^{0} $,L个方向上的波束驻留时间序列$ \left[T_{s,1}^{\text{0}},T_{s,\text{2}}^{\text{0}},\cdots,T_{s,L}^{\text{0}}\right] $,目标方向上的设计发射增益$ \left[{G}_{1},{G}_{2},\cdots,{G}_{L}\right] $,迭代步
     长$ {\Delta }_{T} $和发射增益设计拟合误差$ {\delta }_{g} $。
     1 代入当前参数,通过式(5)计算L个方向上的发射增益。
     2 for $ l=1,2,\cdots,L $ do
     3  while $ \Delta {G}_{l} > {\delta }_{g} $ do
     4   针对第l个目标方向,令$ T_{s,l}^{q}\leftarrow \left(1+i{\Delta }_{T}\right)T_{s,l}^{0} $;
     5   适当调整并代入$ T_{s,l}^{i} $,通过式(12)计算第l个子脉冲内的载频差$ \Delta {f}_{l}{}^{i} $;
     6   代入当前参数,通过式(5)计算第l个方向上的发射增益;
     7   计算第l个方向上的实际增益与设计增益$ {G}_{l} $差的绝对值$ \Delta {G}_{l} $;
     8  $ i\leftarrow i+1 $;
     9 end
     10 end
     11 更新系统参数,通过式(15)计算K个非ROI子脉冲对应的载频差$ \Delta {f}_{K} $;
     12 通过式(12)计算K个非ROI子脉冲的子脉冲宽度;
     13 针对L个定制子脉冲设计低APSL, ICSL的相位编码波形;
     14 针对K个非ROI子脉冲设计窄带搜索波形;
     15 根据设计所得系统参数及基带波形,通过式(13)组合$ {N}_{p} $个子脉冲得到M个通道的发射波形组。
     输出: 相参FDA雷达M个通道发射波形组$ \mathbf{s}\left(t\right)={\left[{s}_{1}\left(t\right),{s}_{2}\left(t\right),\cdots,{s}_{M}\left(t\right)\right]}^{\rm T} $。
    下载: 导出CSV

    表  2  相参FDA雷达系统参数

    Table  2.   System parameters of coherent FDA radar

    参数 数值
    参考载频$ {f}_{\rm c} $ 10 GHz
    发射/接收阵元数目N/M 12
    阵元间距d 0.015 m
    脉冲重复周期$ {T}_{p} $ 10 μs
    采样频率$ {F}_{s} $ 300 MHz
    波束扫描覆盖范围$ {{\varOmega }}_{\text{FDA}} $ $ \left[-{90}^{\circ },{90}^{\circ }\right] $
    目标1位置$ {{\varTheta }}_{1} $ -30°
    目标2位置$ {{\varTheta }}_{2} $
    目标3位置$ {{\varTheta }}_{3} $ 30°
    下载: 导出CSV

    表  3  RAE网络参数设计

    Table  3.   Parameters of residual auto-encoder network

    参数 数值
    编码器残差块维度 [512, 256, 128]
    潜在空间维度$ {d}_{lat} $ 64
    解码器残差块维度 [128, 256, 512]
    损失函数权重系数 $ {\lambda }_{a}=\text{1} $, ${\lambda }_{c}=\text{0}.1 $
    学习率 0.001
    批处理大小(Batch Size) 10
    训练周期(Epochs) 1000
    下载: 导出CSV
  • [1] 吴曼青, 赵逸超, 何峰, 等. 计算阵列-计算赋能的数字阵列技术[J]. 中国科学: 信息科学, 2022, 52(12): 2270–2289. doi: 10.1360/SSI-2021-0368.

    WU Manqing, ZHAO Yichao, HE Feng, et al. Computational array-digital array with computational empowerment[J]. SCIENTIA SINICA Informationis, 2022, 52(12): 2270–2289. doi: 10.1360/SSI-2021-0368.
    [2] 郭瑞, 张月, 田彪, 等. 全息凝视雷达系统技术与发展应用综述[J]. 雷达学报, 2023, 12(2): 389–411. doi: 10.12000/JR22153.

    GUO Rui, ZHANG Yue, TIAN Biao, et al. Review of the technology, development and applications of holographic staring radar[J]. Journal of Radars, 2023, 12(2): 389–411. doi: 10.12000/JR22153.
    [3] YU Lei, HE Feng, and SU Yi. Multiscale observation in wide-spatial radar surveillance based on coherent FDA design[J]. Science China Information Sciences, 2024, 67(2): 122304. doi: 10.1007/s11432-022-3816-3.
    [4] ANTONIK P, WICKS W, GRIFFITHS H, et al. Frequency diverse array radars[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 470–475. doi: 10.1109/RADAR.2006.1631800.
    [5] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
    [6] 桂荣华. 频控阵雷达自适应处理关键技术研究[D]. [博士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.000097.

    GUI Ronghua. Research on adaptive processing technology for frequency diverse array radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.000097.
    [7] 许京伟, 兰岚, 朱圣棋, 等. 相干频率分集阵雷达匹配滤波器设计[J]. 系统工程与电子技术, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08.

    XU Jingwei, LAN Lan, ZHU Shengqi, et al. Design of matched filter for coherent FDA radar[J]. Systems Engineering and Electronics, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08.
    [8] 于雷, 何峰, 董臻, 等. 一种基于非线性调频信号和空域编码的FDA雷达波形设计方法[J]. 雷达学报, 2021, 10(6): 822–832. doi: 10.12000/JR21008.

    YU Lei, HE Feng, DONG Zhen, et al. A waveform design method based on nonlinear frequency modulation and space-coding for coherent frequency diverse array radar[J]. Journal of Radars, 2021, 10(6): 822–832. doi: 10.12000/JR21008.
    [9] WANG Huake, LIAO Guisheng, XU Jingwei, et al. Transmit beampattern design for coherent FDA by piecewise LFM waveform[J]. Signal Processing, 2019, 161: 14–24. doi: 10.1016/j.sigpro.2019.03.010.
    [10] YU Lei, HE Feng, SU Yi, et al. Transmitting strategy with high degrees of freedom for pulsed-coherent FDA radar[J]. IET Radar, Sonar & Navigation, 2022, 16(4): 659–667. doi: 10.1049/rsn2.12210.
    [11] 王华柯. 新型发射分集MIMO雷达方向图设计及信号处理研究[D]. [博士论文], 西安电子科技大学, 2021. doi: 10.27389/d.cnki.gxadu.2021.000001.

    WANG Huake. Research on beampattern design and signal processing for transmit diversity MIMO radar[D]. [Ph.D. dissertation], Xidian University, 2021. doi: 10.27389/d.cnki.gxadu.2021.000001.
    [12] WANG Huake, LIAO Guisheng, XU Jingwei, et al. Space-time matched filter design for interference suppression in coherent frequency diverse array[J]. IET Signal Processing, 2020, 14(3): 175–181. doi: 10.1049/iet-spr.2019.0227.
    [13] YU Lei, ZHANG Qilei, HE Feng, et al. A controllable range resolution enhancement method for coherent FDA radar[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 1963–1967. doi: 10.1109/Radar53847.2021.10028540.
    [14] YU Lei, HE Feng, ZHANG Yongsheng, et al. Low-PSL mismatched filter design for coherent FDA radar using phase-coded waveform[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3507405. doi: 10.1109/LGRS.2023.3309827.
    [15] QIU Xiangfeng, JIANG Weidong, ZHANG Xinyu, et al. Simultaneous design of PCFM waveforms and receive filters toward ISRJ suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3509305. doi: 10.1109/LGRS.2024.3457536.
    [16] LI Yongzhe and VOROBYOV S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197–1212. doi: 10.1109/TSP.2017.2787104.
    [17] KANG B, KWEON J, RANGASWAMY M, et al. Deep learning for radar waveform design: Retrospectives and the road ahead[C]. 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 2023: 1–6. doi: 10.1109/RADAR54928.2023.10371126.
    [18] ZHAO Ziwei, HU Jinfeng, ZHONG Kai, et al. MIMO radar waveform design for range-ISL optimization via iterative deep unfolding network[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3503405. doi: 10.1109/LGRS.2024.3368446.
    [19] SEKIYA R, MORI H, HASHIMOTO H, et al. Design of long-sequence unimodular waveforms using an original autoencoder for MIMO radar systems[C]. 2023 20th European Radar Conference (EuRAD), Berlin, Germany, 2023: 339–342. doi: 10.23919/EuRAD58043.2023.10289508.
    [20] SEKIYA R, MORI H, HASHIMOTO H, et al. Use of ResNet autoencoders for designing phase-quantized sequences with good correlation for MIMO radar systems[J]. IEEE Transactions on Radar Systems, 2025, 3: 681–694. doi: 10.1109/TRS.2025.3562698.
    [21] HU Jinfeng, WEI Zhiyong, LI Yuzhi, et al. Designing unimodular waveform(s) for MIMO radar by deep learning method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1184–1196. doi: 10.1109/TAES.2020.3037406.
    [22] GUI Ronghua, WANG Wenqin, CUI Can, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. doi: 10.1109/TSP.2017.2764860.
    [23] BARTON D K. Low-angle radar tracking[J]. Proceedings of the IEEE, 1974, 62(6): 687–704. doi: 10.1109/PROC.1974.9509.
    [24] HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations-including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108.
    [25] ZHANG Ben, ZHANG Yongsheng, HE Feng, et al. Range resolution control and fractional Fourier domain target localization with nonlinear time-variant phase diverse FDA[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(6): 17151–17171. doi: 10.1109/TAES.2025.3601572.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21

目录

    /

    返回文章
    返回