基于有源干扰机的SAR智能识别对抗方法

周雅婷 周勇胜 薛清华 马飞 张帆

周雅婷, 周勇胜, 薛清华, 等. 基于有源干扰机的SAR智能识别对抗方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25110
引用本文: 周雅婷, 周勇胜, 薛清华, 等. 基于有源干扰机的SAR智能识别对抗方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25110
ZHOU Yating, ZHOU Yongsheng, XUE Qinghua, et al. An active jammer-based adversarial attack method against SAR automatic target recognition[J]. Journal of Radars, in press. doi: 10.12000/JR25110
Citation: ZHOU Yating, ZHOU Yongsheng, XUE Qinghua, et al. An active jammer-based adversarial attack method against SAR automatic target recognition[J]. Journal of Radars, in press. doi: 10.12000/JR25110

基于有源干扰机的SAR智能识别对抗方法

DOI: 10.12000/JR25110 CSTR: 32380.14.JR25110
基金项目: 国家自然科学基金(62271034)
详细信息
    作者简介:

    周雅婷,博士生,主要研究方向为SAR图像仿真和SAR对抗攻击

    周勇胜,博士,教授,博士生导师,主要研究方向为SAR图像目标检测与识别、SAR载荷定标与性能检测等

    薛清华,博士,主要研究方向为目标认知对抗技术

    马 飞,博士,副教授,主要研究方向为极化SAR图像处理、机器学习

    张 帆,博士,教授,博士生导师,主要研究方向为SAR系统成像仿真、高性能计算等

    通讯作者:

    马飞 mafei@mail.buct.edu.cn

  • 责任主编:计科峰 Corresponding Editor: JI Kefeng
  • 中图分类号: TP753

An Active Jammer-Based Adversarial Attack Method Against SAR Automatic Target Recognition

Funds: The National Natural Science Foundation of China (62271034)
More Information
  • 摘要: 合理利用SAR对抗样本可以使得特定目标在智能探测技术下实现遥感隐身,从而避免被敌方探测或识别。数字域的SAR对抗方法仅在图像域进行攻击,缺乏物理可实现性,现有物理域对抗方法通过在目标周围布置角反射器、超表面,借助电磁计算模拟对抗样本,但由于散射估计精度低导致实际保护效能受限。为解决上述问题,该文将SAR有源干扰技术与对抗攻击方法相结合,提出了基于有源干扰机的SAR智能识别对抗方法,在信号域扰动目标回波信号以生成对抗样本。首先,选择基于余弦幅度加权的多相位分段调制干扰技术,通过扰动分量的设计,实现对抗扰动信号的参数化控制;然后,基于SAR成像链路,将有源干扰机生成的对抗扰动信号与目标的回波信号融合,经成像处理得到具有物理意义的SAR对抗样本;最后,引入差分进化算法,动态调整多相位分段调制干扰的能量分布与空间覆盖范围等参数,进而优化SAR对抗样本,在干扰强度较小的情况下取得最佳攻击成功率。实验结果表明,所提方法在MSTAR数据集上实现平均90.88%的攻击成功率,并对5种SAR-ATR模型具有较强的可转移性,其中最高可达75.57%。该方法实现了更具物理可实现性的对抗样本生成,为遥感探测中特定目标的安全防护开辟新的解决思路,并为真实场景下有源干扰信号的应用提供智能化指导。

     

  • 图  1  不同的SAR图像对抗攻击方法攻击流程

    Figure  1.  Attack flows of different SAR adversarial attack methods

    图  2  整体流程图

    Figure  2.  Algorithmic flow of the proposed method

    图  3  SAR系统及有源干扰机的工作原理与几何关系示意图

    Figure  3.  Schematic of the working principle and geometric relationship for SAR system and active jammer

    图  4  基于余弦幅度加权的多相位分段调制扰动信号生成示意图

    Figure  4.  Schematic of the generation of a multiple phase sectionalized modulation jamming signal based on cosine amplitude weighting

    图  5  不同参数下扰动信号仿真结果

    Figure  5.  Simulation results of the jamming signal under different parameters.

    图  6  回波数据仿真结果

    Figure  6.  Simulation results of the echo data.

    图  7  MSTAR 10类别图像的光学—SAR对照图

    Figure  7.  Optical vs. SAR comparison of ten ground vehicle target types in the MSTAR Dataset

    图  8  不同超参数下的攻击成功率

    Figure  8.  Fooling rate under different hyperparameters

    图  9  生成的SAR对抗样本及Grad-CAM可视化分析

    Figure  9.  Generated SAR adversarial examples and Grad-CAM visualization analysis

    图  10  本文方法对不同SAR识别网络的攻击效果

    Figure  10.  Attack results of the proposed method on different SAR-ATR models

    图  11  不同对抗攻击方法生成的对抗样本

    Figure  11.  Adversarial samples generated by different adversarial attack methods

    图  12  不同极化下的目标原始样本和对抗样本

    Figure  12.  Original and Adversarial samples of targets under different polarizations.

    图  13  不同对抗攻击方法生成的对抗样本的迁移攻击性能

    Figure  13.  Transferability of adversarial examples generated by different attack methods

    图  14  不同扰动参数下的各类别预测概率变化曲线

    Figure  14.  Curves of prediction probability variations for individual classes under different parameters

    图  15  不同能量缩放因子下的2S1对抗样本

    Figure  15.  2S1 adversarial examples under different energy scaling factor

    图  16  不同初始干扰范围下的2S1对抗样本

    Figure  16.  2S1 adversarial examples under different initial jamming range

    图  17  不同多分段相位向量下的2S1对抗样本

    Figure  17.  2S1 adversarial examples under different multi-segment phase vectors

    图  18  不同位置偏移向量下2S1的预测概率变化图

    Figure  18.  Plot of prediction probability variations for the 2S1 target under different positional offsets

    图  19  不同位置偏移参数下的2S1对抗样本

    Figure  19.  2S1 adversarial examples under different positional offsets

    图  20  不同SAR-ATR模型的分类混淆矩阵

    Figure  20.  Classification confusion matrices for different SAR-ATR models

    1  基于有源干扰机的SAR智能识别对抗方法算法

    1.   Jammer-based adversarial attack algorithm

     输入:原始SAR图像样本x及其标签$ y^{\mathrm{gt}} $,目标SAR系统成像参数$ \Theta $,分类网络F,扰动向量范围$ \left[{\boldsymbol{r}}_{\text {min }},{\boldsymbol{ r}}_{\text {max }}\right] $,DE算法的种群大小NP和最
     大查询次数$ Q_{\max } $
     输出:对抗样本$ x^{adv} $
     1. 直接输入原始样本的回波信号$ s(t, \tau) $或通过式(20)计算原始SAR图像样本的回波信号$ s(t, \tau) $;
     2. 设置当前代数G=1,初始化种群得到NP个候选解$ {\boldsymbol{r}}_{0}^{G}=\left[{\boldsymbol{f}}_{1}^{G}, {\boldsymbol{f}}_{2}^{G}, \cdots, {\boldsymbol{r}}_{\mathrm{NP}}^{G}\right] $
     3. WHILE G*NP<$ Q_{\max } $
     4. 通过式(18)计算候选解对应的对抗扰动信号$ \left[ \varepsilon _{1}^{G}, \varepsilon_{2}^{G}, \cdots, \varepsilon_{\mathbb{NP}}^{G}\right] $
     5. 通过式(19)计算对抗样本回波并成像得到候选对抗样本$ \left[{\boldsymbol{x}}_{1}^{G}, {\boldsymbol{x}}_{2}^{G}, \cdots, {\boldsymbol{x}}_{{\mathrm{NP}}}^{G}\right] $
     6. 计算每个候选对抗样本的预测标签$ \left[\hat{y}_{1}^{G}, \hat{y}_{2}^{G}, \ldots, \hat{y}_{\mathrm{NP}}^{G}\right] $及目标函数值$ \left[\mathcal{L}_{1}^{G}, \mathcal{L}_{2}^{G}, \ldots, \mathcal{L}_{\mathrm{NP}}^{G}\right] $
     7.  FOR j=1:NP
     8.   IF $ \hat{y}_{j}^{G}=y^{{\mathrm{gt}}} $
     9.    攻击成功,算法终止,输出最优解
     10.   ELSE 执行选择操作,返回当前最优解,进入步骤12作为新的个体
     11. END
     12. G=G+1
     13. 对种群中个体执行变异和交叉操作得到候选解$ {\boldsymbol{r}}^{G} $
     14. END
     15. 输出结果
    下载: 导出CSV

    表  1  MSTAR详细信息

    Table  1.   MSTAR dataset details

    标签类别名训练集测试集
    02S1299274
    1BRDM2298274
    2BTR60256195
    3D7299274
    4T62299273
    5ZIL131299274
    6ZSU234299274
    7BMP2233195
    8BTR70233196
    9T72232196
    总数27472425
    下载: 导出CSV

    表  2  SAR ATR模型的训练结果

    Table  2.   Training and testing accuracy of five SAR ATR models

    SAR目标识别网络训练精度测试精度
    SAR-CNN100%97.60%
    VGG1999.64%93.60%
    DenseNet121100%97.60%
    ResNet50100%97.40%
    MobileNetV2100%96.60%
    Swin transformer100%97.20%
    下载: 导出CSV

    表  3  不同对抗攻击方法对识别模型的攻击成功率

    Table  3.   Fooling rate of different adversarial attack methods on SAR-ATR Models

    对抗攻击方法 SAR-CNN VGG19 ResNet50 DenseNet121 MobileNetV2 Swin Transformer 平均
    Adversarial Patch 11.75% 14.10% 7.91% 7.91% 5.77% 6.42% 8.98%
    Deepfool 97.44% 93.16% 96.37% 95.30% 93.80% 93.53% 94.93%
    Square Attack 83.76% 91.67% 81.62% 86.75% 89.96% 89.09% 84.14%
    AutoAttack 77.56% 90.81% 96.37% 95.51% 97.25% 99.19% 92.78%
    PR-SSAttack[13] 99.59% 94.44% 96.51% 91.19% 88.20% 67.07% 89.50%
    所提方法 99.39% 94.01% 92.20% 90.57% 93.79% 71.31% 90.88%
    下载: 导出CSV

    表  4  飞机全极化数据集详细信息

    Table  4.   Aircraft dataset details

    HHHVVHVV
    标签类别名训练集测试集训练集测试集训练集测试集训练集测试集
    0Cessna_208699174700174678169700174
    1King_Air_350i16240163401543816340
    2Kodiak_100699174700174678169700174
    3Pilatus_PC_1216240163401543816340
    4T5041397349139934913563381399349
    总数3119777312577730207523125777
    下载: 导出CSV

    表  5  不同极化下MobileNetV2模型的分类精度和攻击成功率

    Table  5.   Accuracy and Fooling rate of MobileNetV2 under Different Polarizations

    极化方式训练精度测试精度攻击成功率
    HH100%96.78%100%
    HV100%94.47%99.50%
    VH100%89.17%99.50%
    VV100%96.53%99.00%
    下载: 导出CSV
  • [1] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014. doi: 10.48550/arXiv.1312.6199.
    [2] 陈岳峰, 毛潇锋, 李裕宏, 等. AI安全——对抗样本技术综述与应用[J]. 信息安全研究, 2019, 5(11): 1000–1007. doi: 10.3969/j.issn.2096-1057.2019.11.009.

    CHEN Yuefeng, MAO Xiaofeng, LI Yuhong, et al. AI security—research and application on adversarial example[J]. Journal of Information Security Research, 2019, 5(11): 1000–1007. doi: 10.3969/j.issn.2096-1057.2019.11.009.
    [3] GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1412.6572.
    [4] CHEN Pinyu, ZHANG Huan, SHARMA Y, et al. ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]. The 10th ACM Workshop on Artificial Intelligence and Security, Dallas, USA, 2017: 15–26. doi: 10.1145/3128572.3140448.
    [5] BROWN T B, MANÉ D, ROY A, et al. Adversarial patch[EB/OL]. https://arxiv.org/abs/1712.09665, 2018.
    [6] DUAN Ranjie, MA Xingjun, WANG Yisen, et al. Adversarial camouflage: Hiding physical-world attacks with natural styles[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 997–1005. doi: 10.1109/CVPR42600.2020.00108.
    [7] 阮航, 崔家豪, 毛秀华, 等. SAR目标识别对抗攻击综述: 从数字域迈向物理域[J]. 雷达学报, 2024, 13(6): 1298–1326. doi: 10.12000/JR24142.

    RUAN Hang, CUI Jiahao, MAO Xiuhua, et al. A survey of adversarial attacks on SAR target recognition: From digital domain to physical domain[J]. Journal of Radars, 2024, 13(6): 1298–1326. doi: 10.12000/JR24142.
    [8] 万烜申, 刘伟, 牛朝阳, 等. 基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法[J]. 雷达学报, 2024, 13(3): 714–729. doi: 10.12000/JR23220.

    WAN Xuanshen, LIU Wei, NIU Chaoyang, et al. Black-box attack algorithm for SAR-ATR deep neural networks based on MI-FGSM[J]. Journal of Radars, 2024, 13(3): 714–729. doi: 10.12000/JR23220.
    [9] ZHOU Jie, PENG Bo, XIE Jianyue, et al. Conditional random field-based adversarial attack against SAR target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4004505. doi: 10.1109/LGRS.2024.3365788.
    [10] DUAN Jiale, QIU Linyao, HE Guangjun, et al. A region-adaptive local perturbation-based method for generating adversarial examples in synthetic aperture radar object detection[J]. Remote Sensing, 2024, 16(6): 997. doi: 10.3390/rs16060997.
    [11] DANG Xunwang, YAN Hua, HU Liping, et al. SAR image adversarial samples generation based on parametric model[C]. 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2021: 1–3. doi: 10.1109/ICMMT52847.2021.9618140.
    [12] PENG Bowen, PENG Bo, ZHOU Jie, et al. Scattering model guided adversarial examples for SAR target recognition: Attack and defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5236217. doi: 10.1109/TGRS.2022.3213305.
    [13] YE Tian, KANNAN R, PRASANNA V, et al. Realistic scatterer based adversarial attacks on SAR image classifiers[C]. 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 2023: 1–6. doi: 10.1109/RADAR54928.2023.10371090.
    [14] ZHOU Junfan, FENG Sijia, SUN Hao, et al. Attributed scattering center guided adversarial attack for DCNN SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4001805. doi: 10.1109/LGRS.2023.3235051.
    [15] ZHANG Fan, YU Yameng, MA Fei, et al. A physically realizable adversarial attack method against SAR target recognition model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11943–11957. doi: 10.1109/JSTARS.2024.3420690.
    [16] LIU Zhe, XIA Weijie, and LEI Yongzhen. SAR-GPA: SAR generation perturbation algorithm[C]. The 3rd International Conference on Advanced Information Science and System, Sanya, China, 2021: 83. doi: 10.1145/3503047.3503136.
    [17] XIA Weijie, LIU Zhe, and LI Yi. SAR-PeGA: A generation method of adversarial examples for SAR image target recognition network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1910–1920. doi: 10.1109/TAES.2022.3206261.
    [18] XIE Jianyue, PENG Bo, LU Zhengzhi, et al. MIGAA: A physical adversarial attack method against SAR recognition models[C]. 2024 9th International Conference on Computer and Communication Systems (ICCCS), Xi’an, China, 2024: 309–314. doi: 10.1109/ICCCS61882.2024.10602913.
    [19] CUI Jiahao, GUO Wang, SHAO Run, et al. Physics-oriented adversarial attacks on SAR image target recognition[C]. The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023.
    [20] LUO Binyan, CAO Hang, CUI Jiahao, et al. SAR-PATT: A physical adversarial attack for SAR image automatic target recognition[J]. Remote Sensing, 2024, 17(1): 21. doi: 10.3390/rs17010021.
    [21] LIU Wei, WAN Xuanshen, NIU Chaoyang, et al. Template-based universal adversarial attack for synthetic aperture radar automatic target recognition network[J]. IET Radar, Sonar & Navigation, 2025, 19(1): e12691. doi: 10.1049/rsn2.12691.
    [22] 徐沙, 黄和国, 张夫龙. 反导雷达新进展及有源干扰技术需求分析[J]. 航天电子对抗, 2016, 32(2): 54–57. doi: 10.16328/j.htdz8511.2016.02.015.

    XU Sha, HUANG Heguo, and ZHANG Fulong. New progress in anti-missile radar and active jamming techniques requirement[J]. Aerospace Electronic Warfare, 2016, 32(2): 54–57. doi: 10.16328/j.htdz8511.2016.02.015.
    [23] Franceschetti G, Migliaccio M, Riccio D, et al. SARAS: A synthetic aperture radar (SAR) raw signal simulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 30(1): 110–123. doi: 10.1109/36.124221.
    [24] 张皓宇, 邢世其. SAR有源干扰对抗仿真软件设计与实现[J]. 舰船电子对抗, 2023, 46(6): 102–110,120. doi: 10.16426/j.cnki.jcdzdk.2023.06.019.

    ZHANG Haoyu and XING Shiqi. Design and implementation of active jamming countermeasure simulation software to SAR[J]. Shipboard Electronic Countermeasure, 2023, 46(6): 102–110,120. doi: 10.16426/j.cnki.jcdzdk.2023.06.019.
    [25] 王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑: 信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematical principles of intermittent sampling repeater jamming[J]. Science in China Ser. E Information Sciences, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.
    [26] 吴晓芳, 代大海, 王雪松, 等. 基于微动调制的SAR新型有源干扰方法[J]. 电子学报, 2010, 38(4): 954–959.

    WU Xiaofang, DAI Dahai, WANG Xuesong, et al. A novel method of active jamming for SAR based on micro motion modulation[J]. Acta Electronica Sinica, 2010, 38(4): 954–959.
    [27] 胡东辉, 吴一戎. 合成孔径雷达散射波干扰研究[J]. 电子学报, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.

    HU Donghui and WU Yirong. The scatter-wave jamming to SAR[J]. Acta Electronica Sinica, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.
    [28] 王宏艳, 降佳伟, 蒲娟, 等. 基于余弦幅度加权的低旁瓣多相位分段调制干扰方法[J]. 系统工程与电子技术, 2021, 43(11): 3185–3193. doi: 10.12305/j.issn.1001-506X.2021.11.18.

    WANG Hongyan, JIANG Jiawei, PU Juan, et al. Multiple phases sectionalized modulation jamming method with low sidelobe based on cosine amplitude weighting[J]. Systems Engineering and Electronics, 2021, 43(11): 3185–3193. doi: 10.12305/j.issn.1001-506X.2021.11.18.
    [29] 伊志勇, 王鸿. 复杂电磁环境下雷达有源干扰机的设计与实现[J]. 应用科技, 2017, 44(2): 84–88. doi: 10.11991/yykj.201608013.

    YI Zhiyong and WANG Hong. Design and implementation of radar active jammer in complex electromagnetic environment[J]. Computing Magazine of the CCF, 2017, 44(2): 84–88. doi: 10.11991/yykj.201608013.
    [30] 汪丙南, 张帆, 向茂生. 基于混合域的SAR回波快速算法[J]. 电子与信息学报, 2011, 33(3): 690–695. doi: 10.3724/SP.J.1146.2010.00555.

    WANG Bingnan, ZHANG Fan, and XIANG Maosheng. SAR raw signal fast algorithm in mixed domain[J]. Journal of Electronics & Information Technology, 2011, 33(3): 690–695. doi: 10.3724/SP.J.1146.2010.00555.
    [31] 金啸宇, 尹嫱, 倪军, 等. 一种基于场景合成和锚点约束的SAR目标检测网络[J]. 南京信息工程大学学报: 自然科学版, 2020, 12(2): 210–215. doi: 10.13878/j.cnki.jnuist.2020.02.008.

    JIN Xiaoyu, YIN Qiang, NI Jun, et al. SAR target detection network based on scenario synthesis and anchor constraint[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2020, 12(2): 210–215. doi: 10.13878/j.cnki.jnuist.2020.02.008.
    [32] STORN R and PRICE K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328.
    [33] ZHANG Fan, MENG Tianying, XIANG Deliang, et al. Adversarial deception against SAR target recognition network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4507–4520. doi: 10.1109/JSTARS.2022.3179171.
    [34] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1409.1556.
    [35] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [36] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[EB/OL]. https://arxiv.org/abs/1608.06993, 2018.
    [37] MEHTA S and RASTEGARI M. MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer[C]. The 10th International Conference on Learning Representations, 2022.
    [38] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [39] MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
    [40] CROCE F and HEIN M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[C]. The 37th International Conference on Machine Learning, 2020: 2206–2216.
    [41] LI Haifeng, HUANG Haikuo, CHEN Li, et al. Adversarial examples for CNN-based SAR image classification: An experience study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1333–1347. doi: 10.1109/JSTARS.2020.3038683.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-06

目录

    /

    返回文章
    返回