复杂环境下机载雷达认知空时自适应处理技术

谢文冲 熊元燚 陈威 柳成荫 田步秋 侯铭 高晨然 王永良

谢文冲, 熊元燚, 陈威, 等. 复杂环境下机载雷达认知空时自适应处理技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25086
引用本文: 谢文冲, 熊元燚, 陈威, 等. 复杂环境下机载雷达认知空时自适应处理技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25086
XIE Wenchong, XIONG Yuanyi, CHEN Wei, et al. Cognitive space-time adaptive processing technology for airborne radar in complex environments[J]. Journal of Radars, in press. doi: 10.12000/JR25086
Citation: XIE Wenchong, XIONG Yuanyi, CHEN Wei, et al. Cognitive space-time adaptive processing technology for airborne radar in complex environments[J]. Journal of Radars, in press. doi: 10.12000/JR25086

复杂环境下机载雷达认知空时自适应处理技术

DOI: 10.12000/JR25086 CSTR: 32380.14.JR25086
基金项目: 国家自然科学基金(62401622)
详细信息
    作者简介:

    谢文冲,博士,教授,主要研究方向为雷达信号处理、空时自适应处理和机载雷达系统论证等

    熊元燚,博士,讲师,主要研究方向为机载雷达信号处理、空时自适应信号处理等

    陈 威,博士,讲师,主要研究方向为机载雷达信号处理、空时自适应信号处理等

    柳成荫,博士,讲师,主要研究方向为机载雷达信号处理系统设计与实现等

    田步秋,硕士,讲师,主要研究方向为机载雷达信号处理系统设计与实现等

    侯 铭,博士生,主要研究方向为机载雷达空时自适应抗干扰、波形优化设计等

    高晨然,硕士生,主要研究方向为机载雷达信号处理、空时自适应信号处理等

    王永良,博士,教授,主要研究方向为雷达信号处理、空时自适应信号处理和阵列信号处理等

    通讯作者:

    熊元燚 xyyafewa@163.com

  • 责任主编:段克清 Corresponding Editor: DUAN Keqing
  • 中图分类号: TN95

Cognitive Space-time Adaptive Processing Technology for Airborne Radar in Complex Environments

Funds: The National Natural Science Foundation of China (62401622)
More Information
  • 摘要: 中国边境线地貌类型丰富,电磁信号密布,导致机载雷达在实际工作中面临的环境非常复杂。机载雷达在复杂地形环境和复杂电磁环境下探测性能严重下降,无法满足作战需求。认知空时自适应处理是一种有效的技术途径。该文提出了认知空时自适应处理架构,并在该架构基础上分别介绍了数据库、算法库、认知STAP技术和反馈控制等。仿真数据分析表明,相对于传统STAP技术,认知空时自适应处理技术可显著提升机载雷达在复杂环境下的运动目标检测性能。

     

  • 图  1  认知STAP技术实现架构框图

    Figure  1.  Implementation architecture diagram of cognitive STAP technology

    图  2  某区域的地理信息数据

    Figure  2.  Geographic information data for a specific region

    图  3  STAP算法库界面

    Figure  3.  STAP algorithm library interface

    图  4  回波信号仿真算法库界面

    Figure  4.  Echo signal simulation algorithm library interface

    图  5  非均匀杂波抑制方法处理流程

    Figure  5.  Processing flow of non-homogeneous clutter suppression method

    图  6  选取的均匀训练样本位置

    Figure  6.  Location of selected homogeneous training samples

    图  7  非平稳杂波抑制方法处理流程

    Figure  7.  Processing flow of non-stationary clutter suppression method

    图  8  共形阵机载雷达杂波功率谱补偿效果

    Figure  8.  Space-time clutter power spectrum compensation performance for conformal array airborne radar

    图  9  风电场杂波抑制方法处理流程

    Figure  9.  Processing flow of wind farm clutter suppression method

    图  10  风轮机回波分布特性

    Figure  10.  Wind turbine echo distribution characteristic

    图  11  微多普勒特征子空间

    Figure  11.  Micro-Doppler feature subspace

    图  12  机载雷达抗主瓣无意干扰方法实现流程框图

    Figure  12.  Implementation flowchart of airborne radar mainlobe unintentional jamming suppression method

    图  13  杂波与目标在极化域上的分布情况

    Figure  13.  Clutter and target distribution characteristics in polarization domain

    图  14  某地区域信息图

    Figure  14.  Regional information map of a certain area

    图  15  主瓣无意干扰抑制前后距离-多普勒谱图

    Figure  15.  Range-Doppler spectra before and after mainlobe unintentional jamming suppression

    图  16  非平稳杂波抑制后的距离-多普勒谱图

    Figure  16.  Range-Doppler spectra before and after non-stationary clutter suppression

    图  17  近程非平稳杂波剩余

    Figure  17.  Short-range non-stationary clutter residual

    图  18  非均匀杂波抑制后的距离-多普勒谱图

    Figure  18.  Range-Doppler spectra before and after non-homogeneous clutter suppression

    图  19  非均匀杂波剩余

    Figure  19.  Non-homogeneous clutter residual

    图  20  风电场杂波抑制后的距离-多普勒谱图

    Figure  20.  Range-Doppler spectra before and after wind farm clutter suppression

    图  21  目标检测性能比较

    Figure  21.  Target detection performance metrics comparison

    表  1  GLC_FCS30-2020数据包含的地表覆盖类型

    Table  1.   Surface cover types included in GLC_FCS30-2020 data

    属性值 地表覆盖类型 属性值 地表覆盖类型
    10 雨水灌溉农田 121 常绿灌木林
    11 草本植物覆盖 122 落叶灌木林
    12 果园 130 草原
    20 未开垦耕地 140 地衣和苔藓
    51 开放常绿阔叶林 150 稀疏植被
    52 郁闭常绿阔叶林 152 稀疏灌木林
    61 开放(郁闭度0.15~0.40)落叶阔叶林 153 稀疏草本
    62 郁闭度大于0.4落叶阔叶林 180 湿地
    71 开放(郁闭度0.15~0.40)常绿针叶林 190 不透水表面
    72 郁闭度大于0.4常绿针叶林 200 裸露地区
    81 开放(郁闭度0.15~0.40)落叶针叶林 201 固结裸露区域
    82 郁闭度大于0.4落叶针叶林 202 未固结裸露区域
    91 开放混合叶林 210 水体
    92 封闭混合叶林 220 永久性冰雪
    120 灌木林
    下载: 导出CSV

    表  2  专家决策规则

    Table  2.   Expert decision-making protocol

    回波类型 算法
    均匀杂波 传统STAP算法[1]、空时极化自适应处理算法[19]
    非均匀杂波 基于地理信息的样本选取算法[20]、色加载STAP算法[21]
    非平稳杂波 3D-STAP算法[1]、基于空时杂波谱自适应补偿的非平稳杂波抑制算法[22,23]
    风电场杂波 基于微多普勒特征的风电场孤立点杂波抑制算法[24]
    无意干扰 基于频域自适应滤波的机载雷达无意干扰抑制算法[26]
    主瓣干扰 空时极化联合自适应抗主瓣干扰算法
    旁瓣干扰 干扰环境下的STAP算法[1]
    下载: 导出CSV

    表  3  机载雷达仿真参数

    Table  3.   Airborne radar simulation parameters

    名称 符号 数值
    载机高度 H 8 km
    载机速度 V 140 m/s
    脉冲数 K 100
    接收机带宽 B 2.5 MHz
    波长 λ 0.1 m
    主波束方位角 θ0 90°
    主波束俯仰角 $\varphi_0 $ 12°
    脉冲重复频率 fr 12000 Hz
    占空比 D 0.1
    下载: 导出CSV

    表  4  干扰及目标仿真参数

    Table  4.   Jamming and target simulation parameters

    分类 名称 指标
    干扰参数 调制方式 AM, OFDM, FM, PM
    干扰信号个数 4
    干扰方位角(°) 88, 89, 90, 91
    干扰俯视角(°) 17.4, 17.1, 16.8, 16.1
    基带频率(MHz) 0.3, 0.4, 0.5, 0.6
    目标参数 目标方位角 88°≤θ≤92°
    目标俯视角 16°≤$\varphi $≤17°
    目标个数 8
    下载: 导出CSV

    表  5  风电场参数

    Table  5.   Wind farm parameters

    名称 叶片数量 叶片长度 风轮机高度 叶片转速 初相
    风轮机1 3 20 m 60 m 0.52 r/s 10°
    风轮机2 3 20 m 60 m 0.58 r/s 20°
    风轮机3 3 20 m 60 m 0.56 r/s 20°
    下载: 导出CSV

    表  6  风电场区域虚警点统计比较

    Table  6.   Wind farm clutter-induced false alarm points statistical comparison

    方法虚警点数虚警占比
    PD方法670.037
    传统STAP方法470.026
    认知STAP方法250.013
    下载: 导出CSV
  • [1] 谢文冲, 王永良, 熊元燚. 机载雷达空时自适应处理[M]. 北京: 清华大学出版社, 2024.

    XIE Wenchong, WANG Yongliang, and XIONG Yuanyi. Space-time Adaptive Processing Technology for Airborne Radar[M]. Beijing: Tsinghua University Press, 2024.
    [2] MELVIN W L. Space-time adaptive radar performance in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 621–633. doi: 10.1109/7.845251.
    [3] XIE Wenchong and WANG Yongliang. STAP for airborne radar with cylindrical phased array antennas[J]. Signal Processing, 2009, 89(5): 883–893. doi: 10.1016/j.sigpro.2008.11.006.
    [4] XIE Wenchong, DUAN Keqing, GAO Fei, et al. Clutter suppression for airborne phased radar with conformal arrays by least squares estimation[J]. Signal Processing, 2011, 91(7): 1665–1669. doi: 10.1016/j.sigpro.2011.01.009.
    [5] XIONG Yuanyi and XIE Wenchong. Adaptive mutual coupling compensation method for airborne STAP radar with end-fire array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1283–1298. doi: 10.1109/TAES.2021.3112556.
    [6] XIONG Yuanyi and XIE Wenchong. Non-stationary clutter suppression method for bistatic airborne radar based on adaptive segmentation and space-time compensation[J]. IET Radar, Sonar & Navigation, 2021, 15(9): 1001–1015. doi: 10.1049/rsn2.12098.
    [7] GUERCI J R. Cognitive Radar: The Knowledge-aided Fully Adaptive Approach[M]. Boston: Artech House, 2010.
    [8] SALAMA Y and SENN R. Knowledge base applications to adaptive space-time processing[R]. Technical Report, AFRL-SN-RS-TR-2001-146, 2001.
    [9] GUERCI J R and BARANOSKI E J. Knowledge-aided adaptive radar at DARPA: An overview[J]. IEEE Signal Processing Magazine, 2006, 23(1): 41–50. doi: 10.1109/MSP.2006.1593336.
    [10] BERGIN J S, KIRK D R, CHANEY G, et al. Evaluation of knowledge-aided STAP using experimental data[C]. 2007 IEEE Aerospace Conference, Big Sky, USA, 2007: 1–13. doi: 10.1109/AERO.2007.353065.
    [11] MELVIN WILLIAM L and SHOWMAN GREGORY A. Knowledge-aided STAP architecture[C]. Knowledge-Aided Sensor Signal Processing and Expert Reasoning (KASSPER), Las Vegas, USA, 2004.
    [12] ZHANG Xiao, LIU Liangyun, WU Changshan, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform[J]. Earth System Science Data, 2020, 12(3): 1625–1648. doi: 10.5194/essd-12-1625-2020.
    [13] ZHANG Xiao, LIU Liangyun, CHEN Xidong, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J]. Remote Sensing, 2019, 11(9): 1056. doi: 10.3390/rs11091056.
    [14] 谢文冲, 柳成荫, 熊元燚, 等. 机载雷达数据库管理软件[S]. 软件著作权, 登记号: 2022SR0942140.

    XIE Wenchong, LIU Chengyin, XIONG Yuanyi, et al. Airborne radar database management software[S]. Software Copyright, Registration Number: 2022SR0942140.
    [15] 谢文冲, 熊元燚, 王永良, 等. 机载预警雷达STAP算法仿真软件[S]. 软件著作权, 登记号: 2023SR0731753.

    XIE Wenchong, XIONG Yuanyi, WANG Yongliang, et al. Airborne early warning radar STAP algorithm simulation software[S]. Software Copyright, Registration Number: 2023SR0731753.
    [16] 李虎, 谢文冲, 熊元燚, 等. 基于先验知识的机载雷达自适应训练样本选取的方法[J]. 空天预警研究学报, 2023, 37(02): 89–93, 104. doi: 10.3969/j.issn.2097-180X.2023.02.002.

    LI Hu, XIE Wenchong, XIONG Yuanyi, et al. Prior knowledge-based adaptive training sample selection method for airborne radar[J]. Journal of Air & Space Early Warning Research, 2023, 37(02): 89–93, 104. doi: 10.3969/j.issn.2097-180X.2023.02.002.
    [17] 高晨然, 熊元燚, 陈威, 等. 机身抖动和阵元失效情况下无人机载雷达精细化杂波仿真方法[J]. 电波科学学报, 2025, 40(4): 1–9. doi: 10.12265/j.cjors.2025062.

    GAO Chenran, XIONG Yuanyi, CHEN Wei, et al. Refined clutter simulation method for UAV-borne radar with airframe vibration and array element failures[J]. Chinese Journal of Radio Science, 2025, 40(4): 1–9. doi: 10.12265/j.cjors.2025062.
    [18] 谢文冲, 熊元燚, 王永良, 等. 机载预警雷达回波信号仿真软件[S]. 软件著作权, 登记号: 2023SR0712124.

    XIE Wenchong, XIONG Yuanyi, WANG Yongliang, et al. Airborne early warning radar echo signal simulation software[S]. Software Copyright, Registration Number: 2023SR0712124.
    [19] 杨志成, 田步秋, 陈威, 等. 基于杂波参数估计的空时极化自适应处理方法[J]. 信号处理, 2025, 41(04): 609–621. doi: 10.12466/xhcl.2025.04.003.

    YANG Zhicheng, TIAN Buqiu, CHEN Wei, et al. Space-time-polarization adaptive processing method based on clutter parameter estimation[J]. Journal of Signal Processing, 2025, 41(04): 609–621. doi: 10.12466/xhcl.2025.04.003.
    [20] GAO Chenran, XIE Wenchong, XIONG Yuanyi, et al. A training sample selection method with fusing GIP statistic and geographic information for airborne radar[J]. Electronics Letters. 2025, 61: e70345. doi: 10.1049/ell2.70345.
    [21] XIONG Yuanyi, XIE Wenchong, LI Hu, et al. Colored-loading factor optimization for airborne KA-STAP radar[J]. IEEE Sensors Journal, 2023, 23(19): 23317–23326. doi: 10.1109/JSEN.2023.3303264.
    [22] XIONG Yuanyi, XIE Wenchong, and WANG Yongliang. Nonstationary clutter suppression based on four dimensional clutter spectrum for airborne radar with conformal array[J]. IEEE Access, 2022, 10: 51850–51861. doi: 10.1109/ACCESS.2022.3174550.
    [23] XIONG Yuanyi, XIE Wenchong, WANG Yongliang, et al. Short-range nonstationary clutter suppression for airborne KA-STAP radar in complex terrain environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 2766–2776. doi: 10.1109/JSTARS.2024.3522257.
    [24] XIONG Yuanyi, XIE Wenchong, CHEN Wei, et al. Isolated point clutter suppression method for airborne STAP radar in wind farm environment[J]. Signal Processing, 2025, 227: 109723. doi: 10.1016/j.sigpro.2024.109723.
    [25] 谢文冲, 熊元燚, 王永良, 等. 一种基于深度学习的机载预警雷达干扰识别方法和装置[P]. 中国, ZL202310796414.9, 2023.

    XIE Wenchong, XIONG Yuanyi, WANG Yongliang, et al. Airborne early warning radar interference identification method and device based on deep learning[P]. CN, ZL202310796414.9, 2023.
    [26] 高晨然, 张西川, 熊元燚, 等. 基于频域滤波的无人机载预警雷达抗主瓣无意干扰方法[J/OL]. 系统工程与电子技术, 2025: 1–13.

    GAO Chenran, ZHANG Xichuan, XIONG Yuanyi, et al. A method for mitigating mainlobe unintentional interference in UAV-borne early warning radar based on frequency-domain filtering[J/OL]. Systems Engineering and Electronics, 2025: 1–13.
    [27] 杨志成, 田步秋, 陈威, 等. 基于空时极化处理的机载雷达非平稳杂波抑制方法[J]. 空天预警研究学报, 2024, 38(4): 235–240. doi: 10.3969/j.issn.2097-180X.2024.04.001.

    YANG Zhicheng, TIAN Buqiu, CHEN Wei, et al. Airborne radar non-stationary clutter suppression method based on space-time-polarization processing[J]. Journal of Air & Space Early Warning Research, 2024, 38(4): 235–240. doi: 10.3969/j.issn.2097-180X.2024.04.001.
    [28] HOU Ming, XIE Wenchong, CHEN Wei, et al. Subband STAP based on a sparse frequency waveform for airborne radar in dense unintentional jamming environment[J]. IEEE Sensors Journal, 2025, 25(9): 15612–15624. doi: 10.1109/JSEN.2025.3550325.
  • 加载中
图(21) / 表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 修回日期:  2025-07-17
  • 网络出版日期:  2025-09-01

目录

    /

    返回文章
    返回