Cognitive Space-time Adaptive Processing Technology for Airborne Radar in Complex Environments
-
摘要: 中国边境线地貌类型丰富,电磁信号密布,导致机载雷达在实际工作中面临的环境非常复杂。机载雷达在复杂地形环境和复杂电磁环境下探测性能严重下降,无法满足作战需求。认知空时自适应处理是一种有效的技术途径。该文提出了认知空时自适应处理架构,并在该架构基础上分别介绍了数据库、算法库、认知STAP技术和反馈控制等。仿真数据分析表明,相对于传统STAP技术,认知空时自适应处理技术可显著提升机载雷达在复杂环境下的运动目标检测性能。Abstract: China has one of the longest land borders in the world and features a diverse range of terrain types and a dense electromagnetic environment. Therefore, in practical applications, airborne radar faces complex environments. The efficacy of detecting airborne radar is severely deteriorated in regions with complex terrains and electromagnetic environments, limiting the ability to meet military operational requirements. Cognitive Space-Time Adaptive Processing (STAP) is an effective technical approach for addressing this problem. In this study, a cognitive STAP architecture is proposed, and based on this architecture, the database, algorithm library, cognitive STAP technology, and feedback control are introduced. Analysis of the simulated data reveals that compared to traditional STAP technology, cognitive space-time adaptive processing technology can significantly enhance the efficacy of detecting moving targets using airborne radar in complex environments.
-
表 1 GLC_FCS30-2020数据包含的地表覆盖类型
Table 1. Surface cover types included in GLC_FCS30-2020 data
属性值 地表覆盖类型 属性值 地表覆盖类型 10 雨水灌溉农田 121 常绿灌木林 11 草本植物覆盖 122 落叶灌木林 12 果园 130 草原 20 未开垦耕地 140 地衣和苔藓 51 开放常绿阔叶林 150 稀疏植被 52 郁闭常绿阔叶林 152 稀疏灌木林 61 开放(郁闭度0.15~0.40)落叶阔叶林 153 稀疏草本 62 郁闭度大于0.4落叶阔叶林 180 湿地 71 开放(郁闭度0.15~0.40)常绿针叶林 190 不透水表面 72 郁闭度大于0.4常绿针叶林 200 裸露地区 81 开放(郁闭度0.15~0.40)落叶针叶林 201 固结裸露区域 82 郁闭度大于0.4落叶针叶林 202 未固结裸露区域 91 开放混合叶林 210 水体 92 封闭混合叶林 220 永久性冰雪 120 灌木林 表 2 专家决策规则
Table 2. Expert decision-making protocol
表 3 机载雷达仿真参数
Table 3. Airborne radar simulation parameters
名称 符号 数值 载机高度 H 8 km 载机速度 V 140 m/s 脉冲数 K 100 接收机带宽 B 2.5 MHz 波长 λ 0.1 m 主波束方位角 θ0 90° 主波束俯仰角 $\varphi_0 $ 12° 脉冲重复频率 fr 12000 Hz占空比 D 0.1 表 4 干扰及目标仿真参数
Table 4. Jamming and target simulation parameters
分类 名称 指标 干扰参数 调制方式 AM, OFDM, FM, PM 干扰信号个数 4 干扰方位角(°) 88, 89, 90, 91 干扰俯视角(°) 17.4, 17.1, 16.8, 16.1 基带频率(MHz) 0.3, 0.4, 0.5, 0.6 目标参数 目标方位角 88°≤θ≤92° 目标俯视角 16°≤$\varphi $≤17° 目标个数 8 表 5 风电场参数
Table 5. Wind farm parameters
名称 叶片数量 叶片长度 风轮机高度 叶片转速 初相 风轮机1 3 20 m 60 m 0.52 r/s 10° 风轮机2 3 20 m 60 m 0.58 r/s 20° 风轮机3 3 20 m 60 m 0.56 r/s 20° 表 6 风电场区域虚警点统计比较
Table 6. Wind farm clutter-induced false alarm points statistical comparison
方法 虚警点数 虚警占比 PD方法 67 0.037 传统STAP方法 47 0.026 认知STAP方法 25 0.013 -
[1] 谢文冲, 王永良, 熊元燚. 机载雷达空时自适应处理[M]. 北京: 清华大学出版社, 2024.XIE Wenchong, WANG Yongliang, and XIONG Yuanyi. Space-time Adaptive Processing Technology for Airborne Radar[M]. Beijing: Tsinghua University Press, 2024. [2] MELVIN W L. Space-time adaptive radar performance in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 621–633. doi: 10.1109/7.845251. [3] XIE Wenchong and WANG Yongliang. STAP for airborne radar with cylindrical phased array antennas[J]. Signal Processing, 2009, 89(5): 883–893. doi: 10.1016/j.sigpro.2008.11.006. [4] XIE Wenchong, DUAN Keqing, GAO Fei, et al. Clutter suppression for airborne phased radar with conformal arrays by least squares estimation[J]. Signal Processing, 2011, 91(7): 1665–1669. doi: 10.1016/j.sigpro.2011.01.009. [5] XIONG Yuanyi and XIE Wenchong. Adaptive mutual coupling compensation method for airborne STAP radar with end-fire array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1283–1298. doi: 10.1109/TAES.2021.3112556. [6] XIONG Yuanyi and XIE Wenchong. Non-stationary clutter suppression method for bistatic airborne radar based on adaptive segmentation and space-time compensation[J]. IET Radar, Sonar & Navigation, 2021, 15(9): 1001–1015. doi: 10.1049/rsn2.12098. [7] GUERCI J R. Cognitive Radar: The Knowledge-aided Fully Adaptive Approach[M]. Boston: Artech House, 2010. [8] SALAMA Y and SENN R. Knowledge base applications to adaptive space-time processing[R]. Technical Report, AFRL-SN-RS-TR-2001-146, 2001. [9] GUERCI J R and BARANOSKI E J. Knowledge-aided adaptive radar at DARPA: An overview[J]. IEEE Signal Processing Magazine, 2006, 23(1): 41–50. doi: 10.1109/MSP.2006.1593336. [10] BERGIN J S, KIRK D R, CHANEY G, et al. Evaluation of knowledge-aided STAP using experimental data[C]. 2007 IEEE Aerospace Conference, Big Sky, USA, 2007: 1–13. doi: 10.1109/AERO.2007.353065. [11] MELVIN WILLIAM L and SHOWMAN GREGORY A. Knowledge-aided STAP architecture[C]. Knowledge-Aided Sensor Signal Processing and Expert Reasoning (KASSPER), Las Vegas, USA, 2004. [12] ZHANG Xiao, LIU Liangyun, WU Changshan, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform[J]. Earth System Science Data, 2020, 12(3): 1625–1648. doi: 10.5194/essd-12-1625-2020. [13] ZHANG Xiao, LIU Liangyun, CHEN Xidong, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J]. Remote Sensing, 2019, 11(9): 1056. doi: 10.3390/rs11091056. [14] 谢文冲, 柳成荫, 熊元燚, 等. 机载雷达数据库管理软件[S]. 软件著作权, 登记号: 2022SR0942140.XIE Wenchong, LIU Chengyin, XIONG Yuanyi, et al. Airborne radar database management software[S]. Software Copyright, Registration Number: 2022SR0942140. [15] 谢文冲, 熊元燚, 王永良, 等. 机载预警雷达STAP算法仿真软件[S]. 软件著作权, 登记号: 2023SR0731753.XIE Wenchong, XIONG Yuanyi, WANG Yongliang, et al. Airborne early warning radar STAP algorithm simulation software[S]. Software Copyright, Registration Number: 2023SR0731753. [16] 李虎, 谢文冲, 熊元燚, 等. 基于先验知识的机载雷达自适应训练样本选取的方法[J]. 空天预警研究学报, 2023, 37(02): 89–93, 104. doi: 10.3969/j.issn.2097-180X.2023.02.002.LI Hu, XIE Wenchong, XIONG Yuanyi, et al. Prior knowledge-based adaptive training sample selection method for airborne radar[J]. Journal of Air & Space Early Warning Research, 2023, 37(02): 89–93, 104. doi: 10.3969/j.issn.2097-180X.2023.02.002. [17] 高晨然, 熊元燚, 陈威, 等. 机身抖动和阵元失效情况下无人机载雷达精细化杂波仿真方法[J]. 电波科学学报, 2025, 40(4): 1–9. doi: 10.12265/j.cjors.2025062.GAO Chenran, XIONG Yuanyi, CHEN Wei, et al. Refined clutter simulation method for UAV-borne radar with airframe vibration and array element failures[J]. Chinese Journal of Radio Science, 2025, 40(4): 1–9. doi: 10.12265/j.cjors.2025062. [18] 谢文冲, 熊元燚, 王永良, 等. 机载预警雷达回波信号仿真软件[S]. 软件著作权, 登记号: 2023SR0712124.XIE Wenchong, XIONG Yuanyi, WANG Yongliang, et al. Airborne early warning radar echo signal simulation software[S]. Software Copyright, Registration Number: 2023SR0712124. [19] 杨志成, 田步秋, 陈威, 等. 基于杂波参数估计的空时极化自适应处理方法[J]. 信号处理, 2025, 41(04): 609–621. doi: 10.12466/xhcl.2025.04.003.YANG Zhicheng, TIAN Buqiu, CHEN Wei, et al. Space-time-polarization adaptive processing method based on clutter parameter estimation[J]. Journal of Signal Processing, 2025, 41(04): 609–621. doi: 10.12466/xhcl.2025.04.003. [20] GAO Chenran, XIE Wenchong, XIONG Yuanyi, et al. A training sample selection method with fusing GIP statistic and geographic information for airborne radar[J]. Electronics Letters. 2025, 61: e70345. doi: 10.1049/ell2.70345. [21] XIONG Yuanyi, XIE Wenchong, LI Hu, et al. Colored-loading factor optimization for airborne KA-STAP radar[J]. IEEE Sensors Journal, 2023, 23(19): 23317–23326. doi: 10.1109/JSEN.2023.3303264. [22] XIONG Yuanyi, XIE Wenchong, and WANG Yongliang. Nonstationary clutter suppression based on four dimensional clutter spectrum for airborne radar with conformal array[J]. IEEE Access, 2022, 10: 51850–51861. doi: 10.1109/ACCESS.2022.3174550. [23] XIONG Yuanyi, XIE Wenchong, WANG Yongliang, et al. Short-range nonstationary clutter suppression for airborne KA-STAP radar in complex terrain environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 2766–2776. doi: 10.1109/JSTARS.2024.3522257. [24] XIONG Yuanyi, XIE Wenchong, CHEN Wei, et al. Isolated point clutter suppression method for airborne STAP radar in wind farm environment[J]. Signal Processing, 2025, 227: 109723. doi: 10.1016/j.sigpro.2024.109723. [25] 谢文冲, 熊元燚, 王永良, 等. 一种基于深度学习的机载预警雷达干扰识别方法和装置[P]. 中国, ZL202310796414.9, 2023.XIE Wenchong, XIONG Yuanyi, WANG Yongliang, et al. Airborne early warning radar interference identification method and device based on deep learning[P]. CN, ZL202310796414.9, 2023. [26] 高晨然, 张西川, 熊元燚, 等. 基于频域滤波的无人机载预警雷达抗主瓣无意干扰方法[J/OL]. 系统工程与电子技术, 2025: 1–13.GAO Chenran, ZHANG Xichuan, XIONG Yuanyi, et al. A method for mitigating mainlobe unintentional interference in UAV-borne early warning radar based on frequency-domain filtering[J/OL]. Systems Engineering and Electronics, 2025: 1–13. [27] 杨志成, 田步秋, 陈威, 等. 基于空时极化处理的机载雷达非平稳杂波抑制方法[J]. 空天预警研究学报, 2024, 38(4): 235–240. doi: 10.3969/j.issn.2097-180X.2024.04.001.YANG Zhicheng, TIAN Buqiu, CHEN Wei, et al. Airborne radar non-stationary clutter suppression method based on space-time-polarization processing[J]. Journal of Air & Space Early Warning Research, 2024, 38(4): 235–240. doi: 10.3969/j.issn.2097-180X.2024.04.001. [28] HOU Ming, XIE Wenchong, CHEN Wei, et al. Subband STAP based on a sparse frequency waveform for airborne radar in dense unintentional jamming environment[J]. IEEE Sensors Journal, 2025, 25(9): 15612–15624. doi: 10.1109/JSEN.2025.3550325. -