自适应PHD-BOF:一种基于低空监视雷达的慢速目标跟踪方法

赵英健 蒋李兵 郑舒予 杨庆伟 王壮

赵英健, 蒋李兵, 郑舒予, 等. 自适应PHD-BOF:一种基于低空监视雷达的慢速目标跟踪方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25081
引用本文: 赵英健, 蒋李兵, 郑舒予, 等. 自适应PHD-BOF:一种基于低空监视雷达的慢速目标跟踪方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25081
ZHAO Yingjian, JIANG Libing, ZHENG Shuyu, et al. Adaptive phd-bof: a slow-moving targets tracking method with air surveillance radar[J]. Journal of Radars, in press. doi: 10.12000/JR25081
Citation: ZHAO Yingjian, JIANG Libing, ZHENG Shuyu, et al. Adaptive phd-bof: a slow-moving targets tracking method with air surveillance radar[J]. Journal of Radars, in press. doi: 10.12000/JR25081

自适应PHD-BOF:一种基于低空监视雷达的慢速目标跟踪方法

DOI: 10.12000/JR25081 CSTR: 32380.14.JR25081
基金项目: 国家重点实验室基金项目(JKWATR-230301)
详细信息
    作者简介:

    赵英健,男,山东人,国防科技大学自动目标识别全国重点实验室博士研究生。主要研究方向为雷达信号处理、阵列信号处理、多目标跟踪

    蒋李兵,男,江苏人,博士,硕士生导师,国防科技大学自动目标识别全国重点实验室副教授。主要研究方向为雷达目标检测、自动目标识别

    郑舒予,男,吉林人,博士,火箭军工程大学智控实验室讲师。主要研究方向为协同探测与多源跟踪

    杨庆伟,男,山西人,国防科技大学自动目标识别全国重点实验室博士研究生。主要研究方向为空间目标监视、雷达资源分配

    王 壮,男,江苏人,博士,博士生导师,国防科技大学自动目标识别全国重点实验室教授。主要研究方向为雷达信息处理、空间目标监视、自动目标识别

    通讯作者:

    王壮 zhuang_wang@sina.com

  • 责任主编:陈小龙 Corresponding Editor: CHEN Xiaolong
  • 中图分类号: TN953

Adaptive PHD-BOF: A Slow-Moving Targets Tracking Method with Air Surveillance Radar

Funds: The Key Library Foundation of China (JKWATR-230301),
More Information
  • 摘要: 以旋翼无人机为代表的低空目标可采用慢速巡航模式,使自身回波落于雷达多普勒盲区内,以躲避雷达检测跟踪。此外,低空环境中存在的复杂地固杂波,更进一步加剧了雷达对慢速目标的检测跟踪任务难度。为解决上述问题,该文基于随机有限集框架,提出一种基于低空监视雷达的慢速目标跟踪方法。首先基于贝叶斯占用滤波思想,将雷达监视区域分割为沿角度-距离向的均匀网格,并依据慢速目标与地固杂波的动力学特性差异设计自适应滤波参数模块;之后,基于概率假设密度滤波器对多普勒盲区内的网格数据进行统一的滤波处理;最后,利用聚类方法从滤波结果中提取感兴趣目标的信息,实现对慢速目标的检测跟踪。在包含多个慢速目标、环境噪声、面杂波及地固点杂波的典型低空监视场景下,结合实测背景杂波数据的实验证明了所提算法对多个低空慢速目标跟踪的有效性、稳健性及性能优势。

     

  • 图  1  雷达监视场景示意图

    Figure  1.  Radar surveillance diagram

    图  2  信号预处理

    Figure  2.  Signal pre-processing

    图  3  自适应新生函数示意图

    Figure  3.  An illustration of adaptive newborn function

    图  4  所提算法流程图

    Figure  4.  Flow diagram of the proposed DPHD occupancy filter

    图  5  对象状态真值

    Figure  5.  Truth of object state

    图  6  面杂波说明

    Figure  6.  An illustration of surface clutter

    图  7  扫描图和CFAR检测结果

    Figure  7.  The scan map and the results of CFAR

    图  8  所提算法滤波结果(部分帧)

    Figure  8.  Filter results of the proposed filter (certain frames)

    图  9  所提算法滤波结果(全部帧)

    Figure  9.  Filter results of the proposed filter(the whole frames)

    图  10  不同算法滤波结果极坐标下表示(聚类处理后)

    Figure  10.  The filter results of different algorithms after cluster denoted by polar coordinate system

    图  11  100次蒙特卡罗实验的OSPA平均误差

    Figure  11.  Average of OSPA errors in 100 Monte Carlo trials

    图  12  所提算法运行时间

    Figure  12.  Runtime of the proposed method

    图  13  100次蒙特卡罗实验的OSPA平均误差(消融实验)

    Figure  13.  Average of OSPA errors in 100 Monte Carlo trials(ablation experiment)

    图  14  100次蒙特卡罗实验的OSPA平均误差(不同SNR)

    Figure  14.  Average of OSPA errors in 100 Monte Carlo trials under different SNR

    1  算法伪代码

    1.   Algorithm pseudo-code

     自适应PHD-BOF预测步
      $ {B_k} \leftarrow {Z_k} \cap \hat O_k^\neg $
     for $n = 1$ to ${n_k}$ do
      for $j = 1$ to ${N_b}$ do
       $ {\boldsymbol{x}}_{k|k}^{n,j}{\text{~}}\mathcal{U}( \cdot |{S_{{l_n}}}) \cdot {f_0}({\boldsymbol{v}}) $
      end for
     end for
       $ {v_{k + 1|k}} \leftarrow {v_{k|k}} + {N_b} \cdot {n_k} $
     步骤2. 计算存活概率
     for $l = 1$ to L do
      if $l \in {\bar O_k}$then
       $ {p_S}(l) \leftarrow {\dot p_S} $
      else
       $ {p_S}(l) \leftarrow {\tilde p_S} $
      end if
     end for
     步骤3. 计算${D_{k + 1|k}}({\boldsymbol{x}})$的权矢量
     for $i = 1$ to ${v_{k + 1|k}}$ do
      if $i \le {v_{k|k}}$ then
       $ {\boldsymbol{x}}_{k + 1|k}^i \sim {f_{k + 1|k}}( \cdot |{\boldsymbol{x}}_{k|k}^i) $
       $ \omega _k^i \leftarrow \omega _{k|k}^i $
      else
        $ {\boldsymbol{x}}_{k + 1|k}^i \sim {f_{k + 1|k}}( \cdot |{\boldsymbol{x}}_{k|k}^{n,j}) $
       $ \omega _k^i \leftarrow u/{N_b} $
      end if
       $ \omega _{k + 1|k}^i \leftarrow {p_S}({l^i}) \cdot \omega _k^i $// $ {l^i} $为$ {\boldsymbol{x}}_{k|k}^i $的单元索引
     end for
     自适应PHD-BOF更新步
     输入:$ {Z_{k + 1}},{O_C},\{ \omega _{k + 1|k}^i,{\boldsymbol{x}}_{k + 1|k}^i\} _{i = 1}^{{v_{k + 1|k}}} $
     输出:$ \{ \omega _{k + 1|k + 1}^i\} _{i = 1}^{{v_{k + 1|k}}} $
      步骤1. 计算$ {\tau _{k + 1}}({\boldsymbol{z}}) $
      for $m = 1$ to ${m_{k + 1}}$ do
       if $m \in {O_C}$ then
        $ {p_D}(m) \leftarrow {\stackrel \frown{p} _D} $
        else
         $ {p_D}(m) \leftarrow {\bar p_D} $
       end if
        $\tau _{k + 1}^{{{\boldsymbol{z}}_m}} \leftarrow {p_D}(m) \cdot \omega _{k + 1|k}^{{{\boldsymbol{z}}_m}}$ // $ {{\boldsymbol{z}}_m} $为${Z_{k + 1}}$的第m个单元
       end for
       for $i = 1$ to ${v_{k + 1|k}}$ do
        if $ h({\boldsymbol{x}}_{k + 1|k}^i) \in {S_{{Z_{k + 1}}}} $ then
       $ {{\boldsymbol{z}}_m} \leftarrow l:h({\boldsymbol{x}}_{k + 1|k}^i) \in {S_l} $
       $ \tau _{k + 1}^{{{\boldsymbol{z}}_m}} \leftarrow \tau _{k + 1}^{{{\boldsymbol{z}}_m}} + {p_D}({\boldsymbol{x}}_{k + 1|k}^i) \cdot \omega _{k + 1|k}^i $
      end if
     end for
     步骤2. 计算权矢量${D_{k + 1|k + 1}}({\boldsymbol{x}})$
     for $i = 1$ to ${v_{k + 1|k}}$ do
      计算$ {L_{{Z_{k + 1}}}}({\boldsymbol{x}}_{k + 1|k}^i) $根据式(24)
      $ \omega _{k + 1|k + 1}^i \leftarrow \omega _{k + 1|k}^i \cdot {L_{{Z_{k + 1}}}}({\boldsymbol{x}}_{k + 1|k}^i) $
    end for
    下载: 导出CSV

    表  1  滤波器参数设置

    Table  1.   Parameters of the filter

    参数 数值 参数 数值 参数 数值
    L 10000 ${\dot p_S}$ 0.01 $\alpha $ 2.5
    d 2 ${\tilde p_S}$ 0.99 ${k_T}$ 0.05
    ${N_b}$ 60 ${\stackrel \frown{p} _D}$ 0.1 $ {\stackrel \frown{\rho } _0} $ 0.01
    ${N_{{\text{eff}}}}$ 1200 ${\bar p_D}$ 0.95 $ {\bar \rho _0} $ 0.3
    u 0.001 ${\lambda _c}$ 0.1 ${\sigma _{\text{V}}}$ 0.1
    下载: 导出CSV

    表  2  雷达系统参数

    Table  2.   Parameters of radar system

    参数 数值 参数 数值 参数 数值 参数 数值
    距离范围 $[{R_{\min }},{R_{\max }}]$ $ [300\; {\text{m}},1800 \;{\text{m}}] $ 距离分辨力$\Delta r$ 15 m 脉冲重复周期 20 μs 带宽B 10 MHz
    角度范围 $[{\theta _{\min }},{\theta _{\max }}]$ [–60°, 60°] 角度分辨力$ \Delta \theta $ 1.2° 载频${f_0}$ 3 GHz 波长$\lambda $ 0.1 m
    速度范围 $ [ - {v_{{m} {\text{dv}}}},{v_{{m} {\text{dv}}}}] $ $ [ - 4.5 \;{\text{m/s}},4.5 \;{\text{m/s}}] $ 信噪比 25 dB 脉冲数 500 CPI 0.01 s
    距离单元数${N_r}$ 100 噪声标准差$ \sigma $ 1 采样快拍数 512 扫描时间${T_s}$ 1 s
    方位单元数 ${N_\theta }$ 100 脉宽$\tau '$ 2 us 阵元数${N_a}$ 64 扫描帧数N 300
    下载: 导出CSV

    表  3  对象状态真值

    Table  3.   Truth of object state

    身份初始状态新生时刻死亡时刻
    T1$ [ - 500,700,2,3] $1250
    T2$ [ - 480,600, - 2,1] $1300
    T3$ [300,600,2,2] $1300
    T4$ [200,900,2,2] $1300
    C1$[ - 350,550]$1300
    C2$[ - 700,900]$1300
    C3$ [0,1040] $1300
    下载: 导出CSV
  • [1] 陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1. 0)及高分辨微动特征提取方法[J]. 雷达学报(中英文), 2024, 13(3): 439–553. doi: 10.12000/JR23142.

    CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multiband FMCW radar LSS-target detection dataset (LSS-FMCWR-1.0) and high-resolution micromotion feature extraction method[J]. Journal of Radars, 2024, 13(3): 439–553. doi: 10.12000/JR23142.
    [2] 陈小龙, 袁旺, 杜晓林, 等. 多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法[J/OL]. 雷达学报, 1–18. https://link.cnki.net/urlid/10.1030.tn.20250514.0954.002, 2025.

    CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multi-band multi-angle FMCW radar low-slow-small target detection dataset (LSS-FMCWR-2.0) and feature fusion classification methods[J/OL]. Journal of Radar, 1–18. https://link.cnki.net/urlid/10.1030.tn.20250514.0954.002, 2025.
    [3] LUO Jiawei, HUANG Yulin, ZHANG Yongchao, et al. Optimal search strategy of low-altitude target for airborne phased array radar using digital elevation model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8025–8037. doi: 10.1109/JSTARS.2022.3206793.
    [4] 鲁其兴, 汤新民, 齐鸣, 等. 一种改进的交互多模型算法在机场运动目标跟踪中的应用[J]. 电子与信息学报, 2025, 47(7): 2225–2236. doi: 10.11999/JEIT241150.

    LU Qixing, TANG Xinmin, QI Ming, et al. An improved interacting multiple model algorithm and its application in airport moving target tracking[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2225–2236. doi: 10.11999/JEIT241150.
    [5] YANG Yong and YANG Boyu. Overview of radar detection methods for low altitude targets in marine environments[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 1–13. doi: 10.23919/JSEE.2024.000026.
    [6] SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008: 1-1328.
    [7] WU Weihua, SUN Hemin, CAI Yichao, et al. MM-GLMB filter-based sensor control for tracking multiple maneuvering targets hidden in the Doppler blind zone[J]. IEEE Transactions on Signal Processing, 2020, 68: 4555–4567. doi: 10.1109/TSP.2020.3009497.
    [8] HAN Wei, TANG Ziyue, and ZHU Zhenbo. Method of target tracking with Doppler blind zone constraint[J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 889–898. doi: 10.1109/JSEE.2013.00103.
    [9] SONG T L, MUSICKI D, and KIM Y. Tracking through occlusions and track segmentation reduction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 623–631. doi: 10.1109/TAES.2013.6404126.
    [10] YEOM S W, KIRUBARAJAN T, and BAR-SHALOM Y. Track segment association, fine-step IMM and initialization with Doppler for improved track performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 293–309. doi: 10.1109/TAES.2004.1292161.
    [11] 徐开明, 王佰录, 李溯琪, 等. 低空监视雷达“走-停-走”目标跟踪技术[J]. 雷达学报, 2022, 11(3): 443–458. doi: 10.12000/JR21211.

    XU Kaiming, WANG Bailu, LI Suqi, et al. Move-stop-move target tracking with low-altitude surveillance radars[J]. Journal of Radars, 2022, 11(3): 443–458. doi: 10.12000/JR21211.
    [12] MBOUOMBOUO MBOUNGAM A H, ZHI Yongfeng, and FONZEU MONGUEN C K. Clutter map constant false alarm rate mixed with the Gabor transform for target detection via Monte Carlo simulation[J]. Applied Sciences, 2024, 14(7): 2967. doi: 10.3390/app14072967.
    [13] PETROVSKAYA A, PERROLLAZ M, OLIVEIRA L, et al. Awareness of road scene participants for autonomous driving[M]. ESKANDARIAN A. Handbook of Intelligent Vehicles. London, U.K.: Springer, 2012: 1383–1432. doi: 10.1007/978-0-85729-085-4_54.
    [14] BAIG Q, PERROLLAZ M, and LAUGIER C. A robust motion detection technique for dynamic environment monitoring: A framework for grid-based monitoring of the dynamic environment[J]. IEEE Robotics & Automation Magazine, 2014, 21(1): 40–48. doi: 10.1109/MRA.2013.2297812.
    [15] DANESCU R, ONIGA F, and NEDEVSCHI S. Modeling and tracking the driving environment with a particle-based occupancy grid[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1331–1342. doi: 10.1109/TITS.2011.2158097.
    [16] NÈGRE A, RUMMELHARD L, and LAUGIER C. Hybrid sampling Bayesian occupancy filter[C]. 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 2014: 1307–1312. doi: 10.1109/IVS.2014.6856554.
    [17] MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2007.
    [18] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119.
    [19] VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190.
    [20] VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241.
    [21] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924.
    [22] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822.
    [23] VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014.
    [24] NUSS D, REUTER S, THOM M, et al. A random finite set approach for dynamic occupancy grid maps with real-time application[J]. International Journal of Robotics Research, 2018, 37(8): 841–866. doi: 10.1177/0278364918775523.
    [25] FAN H Q, KUCNER T P, MAGNUSSON M, et al. A dual PHD filter for effective occupancy filtering in a highly dynamic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2977–2993. doi: 10.1109/TITS.2017.2770152.
    [26] COUÉ C, PRADALIER C, LAUGIER C, et al. Bayesian occupancy filtering for multitarget tracking: An automotive application[J]. The International Journal of Robotics Research, 2006, 25(1): 19–30. doi: 10.1177/0278364906061158.
    [27] CHEN C, TAY C, LAUGIER C, et al. Dynamic environment modeling with gridmap: A multiple-object tracking application[C]. 2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006: 1–6. doi: 10.1109/ICARCV.2006.345399.
    [28] SAVAL-CALVO M, MEDINA-VALDÉS L, CASTILLO-SECILLA J M, et al. A review of the Bayesian occupancy filter[J]. Sensors, 2017, 17(2): 344. doi: 10.3390/s17020344.
    [29] MAHAFZA B R and ELSHERBENI A Z. Matlab Simulations for Radar Systems Design[M]. New York: Chapman and Hall/CRC, 2004.
    [30] MAHLER R. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2014.
    [31] HUANG Zicheng, LIANG Zuoping, ZHOU Shibo, et al. An improved density-based spatial clustering of applications with noise algorithm with an adaptive parameter based on the sparrow search algorithm[J]. Algorithms, 2025, 18(5): 273. doi: 10.3390/a18050273.
    [32] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29

目录

    /

    返回文章
    返回