以通信为中心的通感一体化信号设计:研究现状与展望

唐爱民 刘凡 袁伟杰 杨杰 王书涵 兰岚 余显祥 冯志勇 金石

唐爱民, 刘凡, 袁伟杰, 等. 以通信为中心的通感一体化信号设计:研究现状与展望[J]. 雷达学报(中英文), 2025, 14(4): 1019–1045. doi: 10.12000/JR25073
引用本文: 唐爱民, 刘凡, 袁伟杰, 等. 以通信为中心的通感一体化信号设计:研究现状与展望[J]. 雷达学报(中英文), 2025, 14(4): 1019–1045. doi: 10.12000/JR25073
TANG Aimin, LIU Fan, YUAN Weijie, et al. Signal design for communication centric ISAC: state of art and future aspects[J]. Journal of Radars, 2025, 14(4): 1019–1045. doi: 10.12000/JR25073
Citation: TANG Aimin, LIU Fan, YUAN Weijie, et al. Signal design for communication centric ISAC: state of art and future aspects[J]. Journal of Radars, 2025, 14(4): 1019–1045. doi: 10.12000/JR25073

以通信为中心的通感一体化信号设计:研究现状与展望

DOI: 10.12000/JR25073 CSTR: 32380.14.JR25073
基金项目: 国家自然科学基金(62331023),广东省基础与应用基础研究基金(2024A1515011218)
详细信息
    作者简介:

    唐爱民,博士,助理研究员,主要研究方向为B5G/6G网络、通信感知一体化技术、全双工通信

    刘 凡,博士,研究员,主要研究方向为6G无线通信、通信感知一体化、低空无线网络

    袁伟杰,博士,副研究员,主要研究方向为正交时频空间调制、通信感知一体化、车联网

    杨 杰,博士,讲师,主要研究方向为通信感知一体化、毫米波通信、人工智能

    王书涵,硕士生,主要研究方向为通信感知一体化技术

    兰 岚,博士,副教授,主要研究方向为雷达探测、信号与信息智能处理、阵列通感一体化技术

    余显祥,博士,副教授,主要研究方向为雷达探测与成像、信号处理、人工智能

    冯志勇,博士,教授,主要研究方向为下一代通信网络、频谱感知、通信感知一体化

    金 石,博士,教授,主要研究方向为无线通信理论、随机矩阵理论、信息论

    通讯作者:

    刘凡 fan.liu@seu.edu.cn

  • 责任主编:唐波 Corresponding Editor: TANG Bo
  • 中图分类号: TN92

Signal Design for Communication Centric ISAC: State of Art and Future Aspects

Funds: The National Natural Science Foundation of China (62331023), The Guangdong Basic and Applied Basic Research Foundation (2024A1515011218)
More Information
  • 摘要: 近年来,通信感知一体化技术受到学术界和工业界的广泛关注,被视为6G网络的关键技术之一。考虑到通信基础设施的广泛部署,将感知功能集成到通信系统中以构建通信感知一体化网络成为研究的重点。为此,以通信为中心的通感一体化信号设计成为首要解决的关键技术问题。以通信为中心的信号设计有两种主要技术路线:(1)基于导频进行感知的信号设计;(2)基于数据进行感知的信号设计。该文对以上两种信号设计的技术路线进行了深入而系统的阐述,其中对基于导频进行感知的信号设计的现有文献进行了全面综述,并对基于数据进行感知的信号设计进行了梳理,最后对通感一体化信号设计的未来研究方向进行了展望。

     

  • 图  1  通感一体化系统模型

    Figure  1.  System model for ISAC

    图  2  导频在OFDM帧结构中的插入结构

    Figure  2.  The pilot structures in OFDM frames

    图  3  不同导频插入模式对应的模糊峰以及不模糊检测范围示意

    Figure  3.  The ambiguous peak and unambiguous detection area for different pilot structures

    图  4  接收OFDM符号的时间轴

    Figure  4.  The timeline for received OFDM symbols

    图  5  OFDM信号的均方ACF及其相干积累示意图

    Figure  5.  The average squared AFC and corresponding coherent integration versions of an OFDM signal

    图  6  SC, CDMA和OFDM调制信号的ACF及其相干积累示意图

    Figure  6.  The average squared ACF and corresponding coherent integration versions of SC, CDMA, and OFDM signals

    图  7  PCS技术在随机ISAC信号设计中的应用实例

    Figure  7.  An illustrative example of the PCS technique for random ISAC signals

    图  8  OFDM调制下使用16-QAM星座的两目标距离估计性能和距离像

    Figure  8.  The range estimation performance and profiles of two targets under OFDM with 16-QAM constellation

    表  1  基于现有通信导频的感知方法

    Table  1.   Summarization of sensing methods based on existing communication reference signals

    通信标准 感知所用信号 感知架构 参考文献
    IEEE 802.11p DSRC 单站感知 [43,44]
    DSRC + ISM频段 单站感知 [43]
    SM 单站感知 [45]
    IEEE 802.11ad Preamble 单站感知 [4650]
    SLS 双站感知 [5153]
    4G LTE CSRS等各种参考信号 \ [5457]
    5G NR SSB等各种参考
    信号
    \ [58,59]
    所有信号 双站感知 [60,61]
    SSB 单站+双站感知 [62]
    双站感知 [63]
    SSB+SIB1 单站感知 [64]
    DMRS 单站感知 [65]
    双站/多站感知 [66]
    PRS 单站感知 [6769]
    CSI-RS + DMRS 双站感知 [70]
    单站感知 [71]
    CSI-RS + DMRS + PRS 单站感知 [72]
    PRS + DMRS 单站感知 [73,74]
    下载: 导出CSV

    表  2  面向通感一体的感知信号优化方法

    Table  2.   Summarization of optimization methods of ISAC sensing signals

    优化目的 通信性能指标 感知性能指标 优化对象 参考文献
    最大化感
    知性能
    通信速率 MI 载波功率 [101]
    功率 CRLB 载波功率 [102]
    \ CRLB 载波数量和位置 [103]
    \ 估计误差 参考信号 [104]
    最大化通
    感性能
    有效信道容量 估计误差 载波数量和功率 [105]
    排队长度 Age of information 雷达模式 [106]
    速率 FI 载波功率 [107]
    SER CRLB 载波功率 [108]
    最小化功率 速率 MI 载波位置和功率 [109]
    速率 MI 载波位置和功率 [110]
    速率 SNR 参考信号间隔
    和功率
    [81,111]
    下载: 导出CSV

    表  3  典型亚高斯星座的峰度值

    Table  3.   Kurtosis values of typical sub-Gaussian constellations

    星座 峰度
    PSK 1.0000
    16-QAM 1.3200
    64-QAM 1.3810
    128-QAM 1.3427
    256-QAM 1.3953
    512-QAM 1.3506
    1024-QAM 1.3988
    2048-QAM 1.3525
    下载: 导出CSV
  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2] PAULRAJ A J and KAILATH T. Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR)[P]. US, 5345599, 1994.
    [3] FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78. doi: 10.1109/NRC.2004.1316398.
    [4] HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, USA, 2000: 21–24. doi: 10.1109/PAST.2000.858893.
    [5] ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, Philadelphia, USA, 2003: 611–614. doi: 10.1109/MWSYM.2003.1211013.
    [6] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [7] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [8] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113.

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
    [9] ITU. Framework and overall objectives of the future development of IMT for 2030 and beyond[R]. ITU-R M.2160-0, 2023.
    [10] 3GPP. Study on integrated sensing and communication[R]. TR 22.837, 2024.
    [11] XIONG Yifeng, LIU Fan, CUI Yuanhao, et al. On the fundamental tradeoff of integrated sensing and communications under Gaussian channels[J]. IEEE Transactions on Information Theory, 2023, 69(9): 5723–5751. doi: 10.1109/TIT.2023.3284449.
    [12] XIONG Yifeng, LIU Fan, WAN Kai, et al. From torch to projector: Fundamental tradeoff of integrated sensing and communications[J]. IEEE BITS the Information Theory Magazine, 2024, 4(1): 73–90. doi: 10.1109/MBITS.2024.3376638.
    [13] ZHANG Zhengyu, HE Ruisi, AI Bo, et al. A general channel model for integrated sensing and communication scenarios[J]. IEEE Communications Magazine, 2023, 61(5): 68–74. doi: 10.1109/MCOM.001.2200420.
    [14] LUO Chenhao, TANG Aimin, GAO Fei, et al. Channel modeling framework for both communications and bistatic sensing under 3GPP standard[J]. IEEE Journal of Selected Areas in Sensors, 2024, 1: 166–176. doi: 10.1109/JSAS.2024.3451411.
    [15] QI Chenhao, CI Wei, ZHANG Jinming, et al. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications[J]. IEEE Communications Letters, 2022, 26(5): 1136–1140. doi: 10.1109/LCOMM.2022.3157751.
    [16] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2022, 70(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215.
    [17] ZHAO Qimin, TANG Aimin, WANG Xudong, et al. Joint transmit and receive beamforming for integrated bistatic radar sensing and MU-MIMO communications[C]. The 98th Vehicular Technology Conference, Hong Kong, China, 2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333698.
    [18] TANG Aimin, WANG Xudong, and ZHANG J A. Interference management for full-duplex ISAC in B5G/6G networks: Architectures, challenges, and solutions[J]. IEEE Communications Magazine, 2024, 62(9): 20–26. doi: 10.1109/MCOM.001.2300654.
    [19] LI Songqian, LUO Chenhao, TANG Aimin, et al. Integrating passive bistatic sensing into mmWave B5G/6G networks: Design and experiment measurement[C]. IEEE International Conference on Communications, Rome, Italy, 2023: 2952–2957. doi: 10.1109/ICC45041.2023.10279065.
    [20] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
    [21] TEMIZ M, HORNE C, PETERS N J, et al. An experimental study of radar-centric transmission for integrated sensing and communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(7): 3203–3216. doi: 10.1109/TMTT.2023.3234309.
    [22] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219.
    [23] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
    [24] ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329.
    [25] 余显祥, 姚雪, 杨婧, 等. 面向感知应用的通感一体化信号设计技术与综述[J]. 雷达学报, 2023, 12(2): 247–261. doi: 10.12000/JR23015.

    YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015.
    [26] JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
    [27] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Integrating low-complexity and flexible sensing into communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1873–1889. doi: 10.1109/JSAC.2022.3156649.
    [28] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832.
    [29] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408.
    [30] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [31] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [32] LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
    [33] HUA Haocheng, HAN Tongxiao, and XU Jie. MIMO integrated sensing and communication: CRB-rate tradeoff[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2839–2854. doi: 10.1109/TWC.2023.3303326.
    [34] 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146.

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146.
    [35] BARNETO C B, LIYANAARACHCHI S D, HEINO M, et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications, 2021, 28(1): 82–88. doi: 10.1109/MWC.001.2000220.
    [36] PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2008.
    [37] ZHANG Yumeng, ADITYA S, and CLERCKX B. Input distribution optimization in OFDM dual-function radar-communication systems[J]. IEEE Transactions on Signal Processing, 2024, 72: 5258–5273. doi: 10.1109/TSP.2024.3491899.
    [38] DERRYBERRY R T, GRAY S D, IONESCU D M, et al. Transmit diversity in 3G CDMA systems[J]. IEEE Communications Magazine, 2002, 40(4): 68–75. doi: 10.1109/35.995853.
    [39] BEMANI Ali, KSAIRI N, and KOUNTOURIS M. Affine frequency division multiplexing for next generation wireless communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8214–8229. doi: 10.1109/TWC.2023.3260906.
    [40] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [41] COHEN D and ELDAR Y C. Sub-nyquist radar systems: Temporal, spectral, and spatial compression[J]. IEEE Signal Processing Magazine, 2018, 35(6): 35–58. doi: 10.1109/MSP.2018.2868137.
    [42] BRAUN M, STURM C, and JONDRAL F K. Maximum likelihood speed and distance estimation for OFDM radar[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 256–261. doi: 10.1109/RADAR.2010.5494616.
    [43] REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 1576–1580. doi: 10.1109/EuCAP.2012.6206084.
    [44] USMAN MAZHER K, SHIMIZU T, HEATH R W, et al. Automotive radar using IEEE 802.11p signals[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377043.
    [45] KIHEI B, COPELAND J A, and CHANG Yusun. Design considerations for vehicle-to-vehicle IEEE 802.11p radar in collision avoidance[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417441.
    [46] KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference, Boston, USA, 2015: 1–5. doi: 10.1109/VTCFall.2015.7390996.
    [47] KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762.
    [48] KUMARI P, ELTAYEB M E, and HEATH R W. Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 923–928. doi: 10.1109/RADAR.2018.8378684.
    [49] MUNS G R, MISHRA K V, GUERRA C B, et al. Beam alignment and tracking for autonomous vehicular communication using IEEE 802.11ad-based radar[C]. IEEE Conference on Computer Communications Workshops, Paris, France, 2019: 535–540. doi: 10.1109/INFCOMW.2019.8845121.
    [50] LIU Linglin, JU Honghao, FANG Xuming, et al. Systematic design of radar detection under IEEE 802.11ad framework[C]. 2021 IEEE 94th Vehicular Technology Conference, Norman, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625293.
    [51] GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic automotive radar using the IEEE 802.11ad standard[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1196–1200. doi: 10.1109/RADAR.2017.7944386.
    [52] GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic radar in IEEE 802.11ad networks[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2441–2454. doi: 10.1109/TSP.2018.2813300.
    [53] GROSSI E, LOPS M, and VENTURINO L. Adaptive detection and localization exploiting the IEEE 802.11ad standard[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4394–4407. doi: 10.1109/TWC.2020.2983032.
    [54] EVERS A and JACKSON J A. Analysis of an LTE waveform for radar applications[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 0200–0205. doi: 10.1109/RADAR.2014.6875584.
    [55] EVERS A and JACKSON J A. Cross-ambiguity characterization of communication waveform features for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3440–3455. doi: 10.1109/TAES.2015.140622.
    [56] DAN Yangpeng, WAN Xianrong, YI Jianxin, et al. Ambiguity function analysis of Long Term Evolution transmission for passive radar[C]. 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–4. doi: 10.1109/ISAPE.2018.8634255.
    [57] BLÁZQUEZ-GARCÍA R, CASAMAYÓN-ANTÓN J, and BURGOS-GARCÍA M. LTE-R based passive multistatic radar for high-speed railway network surveillance[C]. 2018 15th European Radar Conference, Madrid, Spain, 2018: 6–9. doi: 10.23919/EuRAD.2018.8546516.
    [58] LIU Yan, DAN Yangpeng, WAN Xianrong, et al. Investigations on 5G-based passive sensing for IoT applications[C]. 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 823–828. doi: 10.1109/ICCC56324.2022.10065876.
    [59] CUI Yuanhao, JING Xiaojun, and MU Junsheng. Integrated sensing and communications via 5G NR waveform: Performance analysis[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022: 8747–8751. doi: 10.1109/ICASSP43922.2022.9746355.
    [60] SAMCZYŃSKI P, ABRATKIEWICZ K, PŁOTKA M, et al. 5G network-based passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108209. doi: 10.1109/TGRS.2021.3137904.
    [61] KSIĘŻYK A, PŁOTKA M, ABRATKIEWICZ K, et al. Opportunities and limitations in radar sensing based on 5G broadband cellular networks[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(9): 4–21. doi: 10.1109/MAES.2023.3267061.
    [62] LI Hang, XIANG Yang, GUO Qinghua, et al. An efficient direct downlink sensing method using 5G NR SSB signals in perceptive mobile networks[J]. IEEE Internet of Things Journal, 2025, 12(11): 15360–15369. doi: 10.1109/JIOT.2025.3527234.
    [63] ABRATKIEWICZ K, KSIĘŻYK A, PŁOTKA M, et al. SSB-based signal processing for passive radar using a 5G network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3469–3484. doi: 10.1109/JSTARS.2023.3262291.
    [64] GOLZADEH M, TIIROLA E, ANTTILA L, et al. Downlink sensing in 5G-advanced and 6G: SIB1-assisted SSB approach[C]. 2023 IEEE 97th Vehicular Technology Conference, Florence, Italy, 2023: 1–7. doi: 10.1109/VTC2023-Spring57618.2023.10200933.
    [65] RAHMAN L, CUI Pengfei, ZHANG J A, et al. Joint communication and radar sensing in 5G mobile network by compressive sensing[C]. 2019 19th International Symposium on Communications and Information Technologies, Ho Chi Minh City, Vietnam, 2019: 599–604. doi: 10.1109/ISCIT.2019.8905229.
    [66] KANHERE O, GOYAL S, BELURI M, et al. Target localization using bistatic and multistatic radar with 5G NR waveform[C]. 2021 IEEE 93rd Vehicular Technology Conference, Helsinki, Finland, 2021: 1–7. doi: 10.1109/VTC2021-Spring51267.2021.9449071.
    [67] WEI Zhiqing, WANG Yuan, MA Liang, et al. 5G PRS-based sensing: A sensing reference signal approach for joint sensing and communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3250–3263. doi: 10.1109/TVT.2022.3215159.
    [68] ÖZBAY E, BISHOYI P K, and PETROVA M. Empowering 5G PRS-based ISAC with compressed sensing[C]. 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2024: 341–345. doi: 10.1109/SPAWC60668.2024.10694602.
    [69] GOLZADEH M, TIIROLA E, TALVITIE J, et al. Joint sensing and UE positioning in 5G-6G: PRS range estimation with suppressed ambiguity[C]. 2024 IEEE Radar Conference, Denver, USA, 2024: 1–6. doi: 10.1109/RadarConf2458775.2024.10548650.
    [70] NATARAJA N K, SHARMA S, ALI K, et al. Bistatic vehicular radar with 5G-NR signals[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 5605–5610. doi: 10.1109/GLOBECOM54140.2023.10436863.
    [71] MA Liang, PAN Chengkang, WANG Qixing, et al. A downlink pilot based signal processing method for integrated sensing and communication towards 6G[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860693.
    [72] WEI Zhiqing, LI Fengyun, LIU Haotian, et al. Multiple reference signals collaborative sensing for integrated sensing and communication system towards 5G-A and 6G[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15185–15199. doi: 10.1109/TVT.2024.3410352.
    [73] KHOSROSHAHI K, SEHIER P, and MEKKI S. Leveraging PRS and PDSCH for integrated sensing and communication systems[C]. 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024: 4702–4707. doi: 10.1109/GLOBECOM52923.2024.10901798.
    [74] KHOSROSHAHI K, SEHIER P, and MEKKI S. Doppler ambiguity elimination using 5G signals in integrated sensing and communication[C]. 2024 IEEE 100th Vehicular Technology Conference, Washington, USA, 2024: 1–6. doi: 10.1109/VTC2024-Fall63153.2024.10757748.
    [75] DUGGAL G, VISHWAKARMA S, MISHRA K V, et al. Doppler-resilient 802.11ad-based ultrashort range automotive joint radar-communications system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4035–4048. doi: 10.1109/TAES.2020.2990393.
    [76] YE Zhifan, ZHOU Zhengchun, FAN Pingzhi, et al. Low ambiguity zone: Theoretical bounds and Doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510.
    [77] WANG Diao, CHEN Weiwei, HE Yinghui, et al. Experimental study on ISAC performance with different sensing sequences[J]. IEEE Communications Letters, 2024, 28(11): 2538–2542. doi: 10.1109/LCOMM.2024.3455779.
    [78] WEI Zhiqing, QU Hanyang, JIANG Wangjun, et al. Iterative signal processing for integrated sensing and communication systems[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 401–412. doi: 10.1109/TGCN.2023.3234825.
    [79] KUMARI P, VOROBYOV S A, and HEATH R W. Adaptive virtual waveform design for millimeter-wave joint communication-radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 715–730. doi: 10.1109/TSP.2019.2956689.
    [80] TANG Aimin, LI Songqian, and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive radar design[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1484–1499. doi: 10.1109/JSTSP.2021.3118888.
    [81] ZHAO Qimin, TANG Aimin, and WANG Xudong. Reference signal design and power optimization for energy-efficient 5G V2X integrated sensing and communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 379–392. doi: 10.1109/TGCN.2023.3234392.
    [82] ZHANG Rui, TSAI S, CHOU T H, et al. Staggered comb reference signal design for integrated communication and sensing[C]. 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications, Valencia, Spain, 2024: 1–7. doi: 10.1109/PIMRC59610.2024.10817393.
    [83] ZHANG Rui, TSAI S, CHOU T H, et al. OFDM reference signal pattern design criteria for integrated communication and sensing[J]. IEEE Internet of Things Journal, 2025, 12(6): 7389–7404. doi: 10.1109/JIOT.2024.3495562.
    [84] MEI Dongyang, WEI Zhiqing, CHEN Xu, et al. A coprime and periodic pilot design for ISAC system[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571182.
    [85] LIU Wenjia, HOU Xiaolin, LIU Juan, et al. Low-overhead sensing RS design for integrated sensing and communication (ISAC)[C]. 2025 IEEE Wireless Communications and Networking Conference, Milan, Italy, 2025: 1–6. doi: 10.1109/WCNC61545.2025.10978510.
    [86] 唐爱民, 王书涵, 曲文泽. 面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计[J]. 雷达学报(中英文), 2025, 14(4): 842–853. doi: 10.12000/JR24240.

    TANG Aimin, WANG Shuhan, and QU Wenze. Reference signal design in OFDM ISAC for long-range and high-speed UAV detection[J]. Journal of Radars, 2025, 14(4): 842–853. doi: 10.12000/JR24240.
    [87] TANG Aimin and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive long range radar[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348201.
    [88] WANG Lin, WEI Zhiqing, SU Liyan, et al. Coherent compensation based ISAC signal processing for long-range sensing: (Invited Paper)[C]. The 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Singapore, Singapore, 2023: 689–695. doi: 10.23919/WiOpt58741.2023.10349853.
    [89] TANG Aimin, ZHAO Qimin, WANG Xudong, et al. ISI-resistant reference signal design and processing for OFDM integrated communications and long-range radar sensing[J]. IEEE Communications Letters, 2024, 28(6): 1322–1326. doi: 10.1109/LCOMM.2024.3394545.
    [90] ZHOU Yanni, XU Chaojun, LIU Jianguo, et al. Improving ISAC system long-range sensing with alternating cyclic prefix and postfix signals[C]. 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications, Valencia, Spain, 2024: 1–6. doi: 10.1109/PIMRC59610.2024.10817467.
    [91] 赵玉振, 陈龙永, 张福博. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报, 2021, 10(3): 453–466. doi: 10.12000/JR21028.

    ZHAO Yuzhen, CHEN Longyong, and ZHANG Fubo. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453–466. doi: 10.12000/JR21028.
    [92] HAN S H and LEE J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[J]. IEEE Wireless Communications, 2005, 12(2): 56–65. doi: 10.1109/MWC.2005.1421929.
    [93] BOURDOUX A, FENG Ruoyu, and BAUDUIN M. Low PAPR design for OFDM symbols with guard bands and baseband filtering[C]. 2024 IEEE Radar Conference, Denver, USA, 2024. doi: 10.1109/RadarConf2458775.2024.10548775.
    [94] LI Wanlu, XIANG Zheng, and REN Peng. Waveform design for dual-function radar-communication system with Golay block coding[J]. IEEE Access, 2019, 7: 184053–184062. doi: 10.1109/ACCESS.2019.2960658.
    [95] LAVERY S P and RATNARAJAH T. Remote sensing with constant-modulus OFDM signals from complementary sequences[C]. 2024 IEEE Radar Conference, Denver, USA, 2024. doi: 10.1109/RadarConf2458775.2024.10548669.
    [96] HU Xiaoyan, MASOUROS C, LIU Fan, et al. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications[C]. IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 1599–1604. doi: 10.1109/ICC45855.2022.9838548.
    [97] CHEN Yating, WEN Cai, HUANG Yan, et al. Joint design of ISAC waveform under PAPR constraints[J]. China Communications, 2024, 21(7): 186–211. doi: 10.23919/JCC.fa.2023-0156.202407.
    [98] TIAN Xuanxuan, ZHANG Tingting, ZHANG Qinyu, et al. HRRP-based extended target recognition in OFDM-based RadCom systems[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647263.
    [99] VARSHNEY P, BABU P, and STOICA P. Low-PAPR OFDM waveform design for radar and communication systems[J]. IEEE Transactions on Radar Systems, 2023, 1: 69–74. doi: 10.1109/TRS.2023.3275210.
    [100] HUANG Yixuan, HU Su, MA Shiyong, et al. Designing low-PAPR waveform for OFDM-based RadCom systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6979–6993. doi: 10.1109/TWC.2022.3153606.
    [101] YAO Rubing, WEI Zhiqing, SU Liyan, et al. Low-PAPR integrated sensing and communication waveform design[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119026.
    [102] LIYANAARACHCHI S D, RIIHONEN T, BARNETO C B, et al. Optimized waveforms for 5G-6G communication with sensing: Theory, simulations and experiments[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8301–8315. doi: 10.1109/TWC.2021.3091806.
    [103] HU Yanmo, DENG Weibo, ZHANG J A, et al. Resource optimization for delay estimation in perceptive mobile networks[J]. IEEE Wireless Communications Letters, 2024, 13(1): 223–227. doi: 10.1109/LWC.2023.3325961.
    [104] HUANG Zhe, WANG Kexuan, LIU An, et al. Joint pilot optimization, target detection and channel estimation for integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10351–10365. doi: 10.1109/TWC.2022.3183621.
    [105] OZKAPTAN C D, EKICI E, ALTINTAS O, et al. OFDM pilot-based radar for joint vehicular communication and radar systems[C]. 2018 IEEE Vehicular Networking Conference, Taipei, China, 2018. doi: 10.1109/VNC.2018.8628347.
    [106] WANG Changheng, ALTINTAS O, OZKAPTAN C D, et al. Multi-range joint automotive radar and communication using pilot-based OFDM radar[C]. 2020 IEEE Vehicular Networking Conference, New York, USA, 2020: 1–4. doi: 10.1109/VNC51378.2020.9318373.
    [107] PU Zhiwei, WANG Wei, LAO Zhiwei, et al. Power allocation of integrated sensing and communication system for the internet of vehicles[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(4): 1717–1728. doi: 10.1109/TGCN.2024.3391015.
    [108] WANG Xuan and HAN Shengqian. Optimization of power allocation for OFDM based ISAC systems[C]. 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024: 5387–5392. doi: 10.1109/GLOBECOM52923.2024.10901655.
    [109] SHI Chenguang, WANG Yijie, WANG Fei, et al. Joint optimization scheme for subcarrier selection and power allocation in multicarrier dual-function radar-communication system[J]. IEEE Systems Journal, 2021, 15(1): 947–958. doi: 10.1109/JSYST.2020.2984637.
    [110] ZHU Jia, CUI Yuanhao, MU Junsheng, et al. Power minimization strategy based subcarrier allocation and power assignment for integrated sensing and communication[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118989.
    [111] ZHAO Qimin, LI Songqian, TANG Aimin, et al. Energy-efficient reference signal optimization for 5G V2X joint communication and sensing[C]. IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 1040–1045. doi: 10.1109/ICC45855.2022.9838978.
    [112] STOICA P, HE Hao, and LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters, 2009, 16(8): 703–706. doi: 10.1109/LSP.2009.2021378.
    [113] LIU Fan, XIONG Yifeng, LU Shihang, et al. Uncovering the iceberg in the sea: Fundamentals of pulse shaping and modulation design for random ISAC signals[J]. IEEE Transactions on Signal Processing, 2025, 73: 2511–2526. doi: 10.1109/TSP.2025.3580596.
    [114] CHTERENTAL O and ÐOKOVIĆ D Ž. On orthostochastic, unistochastic and qustochastic matrices[J]. Linear Algebra and its Applications, 2008, 428(4): 1178–1201. doi: 10.1016/j.laa.2007.09.022.
    [115] LIU Fan, ZHANG Ying, XIONG Yifeng, et al. CP-OFDM achieves the lowest average ranging sidelobe under QAM/PSK constellation[J]. IEEE Transactions on Information Theory. doi: 10.1109/TIT.2025.3591267.
    [116] DECARLO L T. On the meaning and use of kurtosis[J]. Psychological Methods, 1997, 2(3): 292–307. doi: 10.1037/1082-989X.2.3.292.
    [117] ABOU-FAYCAL I C, TROTT M D, and SHAMAI S. The capacity of discrete-time memoryless Rayleigh-fading channels[J]. IEEE Transactions on Information Theory, 2001, 47(4): 1290–1301. doi: 10.1109/18.923716.
    [118] GURSOY M C, POOR H V, and VERDU S. Noncoherent Rician fading Channel-part II: Spectral efficiency in the low-power regime[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2207–2221. doi: 10.1109/TWC.2005.853971.
    [119] WEI Zhiqing, PIAO Jinghui, YUAN Xin, et al. Waveform design for MIMO-OFDM integrated sensing and communication system: An information theoretical approach[J]. IEEE Transactions on Communications, 2024, 72(1): 496–509. doi: 10.1109/TCOMM.2023.3317258.
    [120] BAZZI A and CHAFII M. On integrated sensing and communication waveforms with tunable PAPR[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7345–7360. doi: 10.1109/TWC.2023.3250263.
    [121] WANG Shixiong, DAI Wei, WANG Haowei, et al. Robust waveform design for integrated sensing and communication[J]. IEEE Transactions on Signal Processing, 2024, 72: 3122–3138. doi: 10.1109/TSP.2024.3410142.
    [122] ZHANG Ruoyu, SHIM B, YUAN Weijie, et al. Integrated sensing and communication waveform design with sparse vector coding: Low sidelobes and ultra reliability[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4489–4494. doi: 10.1109/TVT.2022.3146280.
    [123] BARRUECO J, MONTALBAN J, IRADIER E, et al. Constellation design for future communication systems: A comprehensive survey[J]. IEEE Access, 2021, 9: 89778–89797. doi: 10.1109/ACCESS.2021.3090774.
    [124] CHO J and WINZER P J. Probabilistic constellation shaping for optical fiber communications[J]. Journal of Lightwave Technology, 2019, 37(6): 1590–1607. doi: 10.1109/JLT.2019.2898855.
    [125] DU Zhen, LIU Fan, XIONG Yifeng, et al. Reshaping the ISAC tradeoff under OFDM signaling: A probabilistic constellation shaping approach[J]. IEEE Transactions on Signal Processing, 2024, 72: 4782–4797. doi: 10.1109/TSP.2024.3465499.
    [126] XU Jingjing, DU Zhen, WANG Jie, et al. An experimental validation of ISAC with probabilistic constellation shaping under OFDM signaling[C]. 2024 IEEE International Conference on Unmanned Systems, Nanjing, China, 2024: 1579–1584. doi: 10.1109/ICUS61736.2024.10840131.
    [127] LIAO Zihan, LIU Fan, LI Shuangyang, et al. Pulse shaping for random ISAC signals: The ambiguity function between symbols matters[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 2832–2846. doi: 10.1109/TWC.2024.3525440.
    [128] GAUDIO L, KOBAYASHI M, CAIRE G, et al. On the effectiveness of OTFS for joint radar parameter estimation and communication[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5951–5965. doi: 10.1109/TWC.2020.2998583.
    [129] YUAN Weijie, ZHOU Lin, DEHKORDI S K, et al. From OTFS to DD-ISAC: Integrating sensing and communications in the delay Doppler domain[J]. IEEE Wireless Communications, 2024, 31(6): 152–160. doi: 10.1109/MWC.018.2300607.
    [130] BEMANI A, KSAIRI N, and KOUNTOURIS M. Integrated sensing and communications with affine frequency division multiplexing[J]. IEEE Wireless Communications Letters, 2024, 13(5): 1255–1259. doi: 10.1109/LWC.2024.3367178.
    [131] LEVANON N and MOZESON E. Radar Signals[M]. New York: John Wiley & Sons, 2004.
    [132] LI Ang, SPANO D, KRIVOCHIZA J, et al. A tutorial on interference exploitation via symbol-level precoding: Overview, state-of-the-art and future directions[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 796–839. doi: 10.1109/COMST.2020.2980570.
    [133] CHUNG S T and GOLDSMITH A J. Degrees of freedom in adaptive modulation: A unified view[J]. IEEE Transactions on Communications, 2001, 49(9): 1561–1571. doi: 10.1109/26.950343.
    [134] LI Ang and MASOUROS C. A two-stage vector perturbation scheme for adaptive modulation in downlink MU-MIMO[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7785–7791. doi: 10.1109/TVT.2015.2489263.
    [135] MASOUROS C and ZHENG Gan. Exploiting known interference as green signal power for downlink beamforming optimization[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3628–3640. doi: 10.1109/TSP.2015.2430839.
    [136] MENG Kaitao, MASOUROS C, CHEN Guangji, et al. Network-level integrated sensing and communication: Interference management and BS coordination using stochastic geometry[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 19365–19381. doi: 10.1109/TWC.2024.3483031.
    [137] MENG Kaitao, MASOUROS C, PETROPULU A P, et al. Cooperative ISAC networks: Opportunities and challenges[J]. IEEE Wireless Communications, 2025, 32(3): 212–219. doi: 10.1109/MWC.008.2400151.
    [138] HUANG Yi, FANG Yuan, LI Xinmin, et al. Coordinated power control for network integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13361–13365. doi: 10.1109/TVT.2022.3194139.
    [139] LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
    [140] WU Kai, PEGORARO J, MENEGHELLO F, et al. Sensing in bistatic ISAC systems with clock asynchronism: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2024, 41(5): 31–43. doi: 10.1109/MSP.2024.3418725.
    [141] LUO Chenhao, WANG Chongrui, TANG Aimin, et al. Experimental study on reference-path-aided system calibration for mmWave bistatic ISAC systems[C]. 2025 IEEE Global Communications Conference, Taipei, China, 2025: 1–6.
    [142] HUA Haocheng, XU Jie, and HAN T X. Optimal transmit beamforming for integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10588–10603. doi: 10.1109/TVT.2023.3262513.
    [143] WEI Zhiqing, YAO Rubing, YUAN Xin, et al. Precoding optimization for MIMO-OFDM integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 288–299. doi: 10.1109/TCCN.2024.3445376.
    [144] 张若愚, 袁伟杰, 崔原豪, 等. 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.

    ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
    [145] ZHANG Ruoyu, CHENG Lei, WANG Shuai, et al. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8571–8587. doi: 10.1109/TWC.2024.3351856.
    [146] ZHANG Ruoyu, WU Xiaopeng, LOU Yi, et al. Channel-training-aided target sensing for terahertz integrated sensing and massive MIMO communications[J]. IEEE Internet of Things Journal, 2025, 12(4): 3755–3770. doi: 10.1109/JIOT.2024.3447584.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-07-21
  • 网络出版日期:  2025-07-25
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回