基于ICESat-2高程数据的南极数字高程模型精度评估

王杰 张智宇 姜洋 赵朴凡 吴松华

王杰, 张智宇, 姜洋, 等. 基于ICESat-2高程数据的南极数字高程模型精度评估[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25068
引用本文: 王杰, 张智宇, 姜洋, 等. 基于ICESat-2高程数据的南极数字高程模型精度评估[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25068
WANG Jie, ZHANG Zhiyu, JIANG Yang, et al. Accuracy assessment of the antarctic digital elevation model based on the ICESat-2 elevation data[J]. Journal of Radars, in press. doi: 10.12000/JR25068
Citation: WANG Jie, ZHANG Zhiyu, JIANG Yang, et al. Accuracy assessment of the antarctic digital elevation model based on the ICESat-2 elevation data[J]. Journal of Radars, in press. doi: 10.12000/JR25068

基于ICESat-2高程数据的南极数字高程模型精度评估

DOI: 10.12000/JR25068 CSTR: 32380.14.JR25068
基金项目: 国家自然科学基金(42206181, U2106210),山东省自然科学基金(ZR2022QD125),中国博士后基金(2021TQ0313)
详细信息
    作者简介:

    王  杰,硕士,主要研究方向为星载激光雷达几何定位

    张智宇,博士,讲师,主要研究方向为激光遥感与光电检测

    姜 洋,硕士,高级工程师,主要研究方向为卫星总体设计

    赵朴凡,博士,主要研究方向为星载激光测高仪误差理论、标定方法、数据处理以及测绘应用

    吴松华,博士,教授,主要研究方向为大气海洋激光探测技术与应用

    通讯作者:

    张智宇 zhangzhiyu@ouc.edu.cn

  • 责任主编:吴诚 Corresponding Editor: WU Cheng
  • 中图分类号: TN29; TN958.98

Accuracy Assessment of the Antarctic Digital Elevation Model Based on the ICESat-2 Elevation Data

Funds: The National Natural Science Foundation of China (42206181, U2106210), Shandong Provincial Natural Science Foundation (ZR2022QD125), China Postdoctoral Science Foundation (2021TQ0313)
More Information
  • 摘要: 南极数字高程模型(DEM)能够为南极科考活动提供关键地形数据的支撑,还可用于融水池体积估算等研究。但南极自然环境恶劣,传统地面定标方法实施困难,星载激光雷达能够直接获取高精度的地表高程数据,可以有效解决这一问题。ICESat-2作为新一代激光测高卫星,其激光足印间隔仅为0.7 m,其南极冰盖的高程数据产品精度可达厘米级。并且该南极冰盖的高程数据产品与南极洲参考高程模型REMA DEM生成的源数据具有较好的时间匹配度。该文首先利用2015年IceBridge计划的IDHDT4数据产品验证了ICESat-2陆冰高数据ATL06的高程精度。在此基础上,利用验证后的ATL06数据系统评估了REMA DEM 32 m分辨率产品的高程精度。研究表明REMA DEM在坡度小于5°的平坦地形上精度可达亚米级,接近激光测高精度,在坡度达到30°时高程误差的RMSE不超过3.5 m。此外,论文进一步分析了地面光斑轨迹方向与DEM坡向间的夹角和季节对REMA DEM高程精度评估的影响。该文精度验证的结果能够为后续利用该数据产品在平坦地区进行冰面湖水深反演等工作提供理论依据。

     

  • 图  1  南极流域划分图[17]

    Figure  1.  Map of the Antarctic drainage divisions[17]

    图  2  ATL06数据质量控制流程图

    Figure  2.  Flow chart of the ATL06 quality control procedure

    图  3  ATL06数据质量控制前后残差分布对比

    Figure  3.  Distribution of residual error of ATL06 data product before and after quality control

    图  4  REMA DEM在海冰区域存在的高程错误示意图

    Figure  4.  Anomalies of REMA DEM in sea ice area

    图  5  不同数据源沿轨方向坡度一致性分析

    Figure  5.  Multi-source along-track slope consistency analysis

    图  6  ICESat-2在区域10地面光斑轨迹及REMA DEM精度验证结果

    Figure  6.  ICESat-2 ground tracks in area 10 and REMA DEM accuracy validation

    图  7  ATL06过区域17轨迹及区域17REMA DEM误差统计

    Figure  7.  ICESat-2 ground tracks in area 17 and REMA DEM accuracy validation

    图  8  REMA DEM的坡向与ICESat-2地面光斑轨迹方向夹角与高程误差关系

    Figure  8.  Elevation error vs. the angles between the DEM slope direction and ICESat-2 ground track orientation

    表  1  ATL06数据质量控制前后对比

    Table  1.   Comparative analysis of the residual error after quality control

    沿轨坡度(°) RMSE (m) MAE (m) 激光测高
    理论不确
    定度(1σ) (m)
    原始
    数据
    质量控制后 原始
    数据
    质量控制后
    0~5 0.94 0.63 0.72 0.43 0.45 @5°
    5~10 1.23 0.79 0.87 0.51 0.88 @10°
    10~15 1.68 1.14 1.16 0.74 1.33 @15°
    15~20 1.95 1.46 1.51 0.99 1.80 @20°
    20~25 2.53 1.58 1.84 1.17 2.30 @25°
    25~30 2.94 1.84 1.97 1.30 2.85 @30°
    >30 4.24 3.81 3.21 2.28 4.13 @35°
    下载: 导出CSV

    表  2  不同年份ATL06数据实际误差与理论误差对比统计

    Table  2.   Comparative statistics between actual errors and theoretical errors of ATL06 data across different years

    沿轨坡度(°) RMSE (m) 激光测高
    理论不确定度(1σ) (m)
    2019年 2020年 2021年
    0~5 0.63 0.68 0.57 0.45 @5°
    5~10 0.79 0.82 0.69 0.88 @10°
    10~15 1.14 1.23 1.14 1.33 @15°
    15~20 1.46 1.37 1.35 1.80 @20°
    20~25 1.58 1.66 1.57 2.30 @25°
    25~30 1.84 1.97 1.81 2.85 @30°
    >30 3.81 4.13 3.82 4.13 @35°
    下载: 导出CSV

    表  3  区域17与区域10误差统计

    Table  3.   Error analysis of REMA DEM in area 17 and area 10

    沿轨坡度(°) RMSE (m) MAE (m) 90分位点(m) ATL06残差
    RMSE (m)
    区域17 区域10 区域17 区域10 区域17 区域10
    0~5 0.72 0.14 0.31 0.09 0.64 0.20 0.63
    5~10 1.91 1.67 1.06 1.02 2.45 2.73 0.79
    10~15 2.39 2.23 1.58 1.35 3.31 3.51 1.14
    15~20 2.78 2.58 1.82 1.73 4.00 4.21 1.46
    20~25 3.14 2.90 2.11 2.02 4.54 4.46 1.58
    25~30 3.33 3.27 2.30 2.23 4.92 4.99 1.84
    >30 4.37 4.26 3.03 2.95 6.69 6.55 3.81
    下载: 导出CSV

    表  4  REMA DEM在区域17夏季和冬季精度检验结果

    Table  4.   Elevation accuracy assessment of Area 17 in summer and winter

    季节 沿轨坡度(°) RMSE (m) MAE (m) 90分位点(m) 数据点
    夏季 0~5 0.80 0.31 0.65 3 470 743
    5~10 1.23 1.08 2.51 1 665 340
    10~15 2.47 1.52 3.37 656 800
    15~20 2.92 1.91 4.09 340 750
    20~25 3.24 2.22 4.63 210 970
    25~30 3.49 2.44 4.95 14 099
    >30 4.67 3.25 7.07 13 490
    冬季 0~5 0.79 0.30 0.64 3 929 370
    5~10 1.15 1.06 2.45 1 954 520
    10~15 2.43 1.47 3.31 787 090
    15~20 2.81 1.83 4.00 427 110
    20~25 3.17 2.12 4.54 274 790
    25~30 3.40 2.32 4.94 18 646
    >30 4.48 3.05 6.71 18 845
    下载: 导出CSV
  • [1] 刘卓, 李佳, 张翔, 等. 利用TanDEM-X影像和ICESat-2高程数据获取南极高精度数字高程模型[J]. 测绘通报, 2022(4): 72–76. doi: 10.13474/j.cnki.11-2246.2022.0113.

    LIU Zhuo, LI Jia, ZHANG Xiang, et al. Obtaining high-precision digital elevation model in Antarctica based on TanDEM-X images and ICESat-2 data[J]. Bulletin of Surveying and Mapping, 2022(4): 72–76. doi: 10.13474/j.cnki.11-2246.2022.0113.
    [2] CUI Xiangbin, JEOFRY H, GREENBAUM J S, et al. Bed topography of princess elizabeth land in east Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765–2774. doi: 10.5194/essd-12-2765-2020.
    [3] MORALES A, FIERREZ J, SÁNCHEZ J S, et al. Pattern Recognition and Image Analysis: 9th Iberian Conference, IbPRIA 2019, Madrid, Spain, July 1–4, 2019, Proceedings, Part I[M]. Cham: Springer, 2019. doi: 10.1007/978-3-030-31332-6.
    [4] HUANG Lanqing and HAJNSEK I. A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery[J]. The Cryosphere, 2024, 18(7): 3117–3140. doi: 10.5194/tc-18-3117-2024.
    [5] FAN Yubin, KE Changqing, and SHEN Xiaoyi. A new Greenland digital elevation model derived from ICESat-2 during 2018–2019[J]. Earth System Science Data, 2022, 14(2): 781–794. doi: 10.5194/essd-14-781-2022.
    [6] SHEN Xiaoyi, KE Changqing, FAN Yubin, et al. A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2[J]. Earth System Science Data, 2022, 14(7): 3075–3089. doi: 10.5194/essd-14-3075-2022.
    [7] DONG Yuting, ZHAO Ji, LI Caiyong, et al. Gapless-REMA100: A gapless 100-m reference elevation model of Antarctica with voids filled by multi-source DEMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186: 70–82. doi: 10.1016/j.isprsjprs.2022.01.024.
    [8] ZWALLY H J, MAJOR J A, BRENNER A C, et al. Ice measurements by geosat radar altimetry[J]. Johns Hopkins APL Technical Digest, 1987, 2: 251–254.
    [9] LIU Hongxing, JEZEK K C, and LI Biyan. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 23199–23213. doi: 10.1029/1999JB900224.
    [10] DIMARZIO J P. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, version 1[R]. NSIDC-0304, 2007. doi: 10.5067/K2IMI0L24BRJ.
    [11] YU J, LIU Hongxing, and WANG Lei, et al. Blue ice areas and their topographical properties in the Lambert glacier, Amery Iceshelf system using Landsat ETM+, ICESat laser altimetry and ASTER GDEM data[J]. Antarctic Science, 2012, 24(1): 95–110. doi: 10.1017/S0954102011000630.
    [12] YANG Kang, SMITH L C, FETTWEIS X, et al. Surface meltwater runoff on the Greenland ice sheet estimated from remotely sensed supraglacial lake infilling rate[J]. Remote Sensing of Environment, 2019, 234: 111459. doi: 10.1016/j.rse.2019.111459.
    [13] LV Jinhao, LI Shaoyu, WANG Xiaoming, et al. Long-term satellite-derived bathymetry of Arctic supraglacial lake from ICESat-2 and Sentinel-2[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, XLVIII-1-2024: 469–477. doi: 10.5194/isprs-archives-XLVIII-1-2024-469-2024.
    [14] LEESON A A, SHEPHERD A, PALMER S, et al. Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet[J]. The Cryosphere, 2012, 6(5): 1077–1086. doi: 10.5194/tc-6-1077-2012.
    [15] HOWAT I M, PORTER C, SMITH B E, et al. The reference elevation model of Antarctica[J]. The Cryosphere, 2019, 13(2): 665–674. doi: 10.5194/tc-13-665-2019.
    [16] LI Yi, FU Haiqing, ZHU Jianjun, et al. A method for SRTM DEM elevation error correction in forested areas using ICESat-2 data and vegetation classification data[J]. Remote Sensing, 2022, 14(14): 3380. doi: 10.3390/rs14143380.
    [17] LIU Zhiwei, ZHU Jianjun, FU Haiqiang, et al. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: A case study over Hunan Province, China[J]. Sensors, 2020, 20(17): 4865. doi: 10.3390/s20174865.
    [18] CHEN Jun, XIONG Liyang, LI Sijin, et al. Global open-access DEM vertical elevation and along track neighbouring structure evaluations in the Tibetan Plateau using ICESat‐2 ATL03 points[J]. Earth Surface Processes and Landforms, 2025, 50(2): e6062. doi: 10.1002/esp.6062.
    [19] FOUNTAIN A G, NYLEN T H, MONAGHAN A, et al. Snow in the McMurdo Dry Valleys, Antarctica[J]. International Journal of Climatology, 2010, 30(5): 633–642. doi: 10.1002/joc.1933.
    [20] SCHENK T, CSATHO B, and NEUMANN T. Assessment of ICESat-2’s horizontal accuracy using precisely surveyed terrains in McMurdo Dry Valleys, Antarctica[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4303811. doi: 10.1109/TGRS.2022.3147722.
    [21] LI Song, LIAO Jingjuan, and ZHANG Lianchong. Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters[J]. Journal of Applied Remote Sensing, 2022, 16(3): 034514. doi: 10.1117/1.JRS.16.034514.
    [22] NILSSON J, GARDNER A S, and PAOLO F S. Elevation change of the Antarctic ice sheet: 1985 to 2020[J]. Earth System Science Data, 2022, 14(8): 3573–3598. doi: 10.5194/essd-14-3573-2022.
    [23] SMITH B, FRICKER H A, HOLSCHUH N, et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment, 2019, 233: 111352. doi: 10.1016/j.rse.2019.111352.
    [24] KOENIG L, MARTIN S, STUDINGER M, et al. Polar airborne observations fill gap in satellite data[J]. Eos, Transactions American Geophysical Union, 2010, 91(38): 333–334. doi: 10.1029/2010EO380002.
    [25] BLANKENSHIP D D, KEMPF S D, YOUNG D A, et al. IceBridge Riegl laser altimeter L2 geolocated surface elevation triplets, version 1[R]. ILUTP2, 2012. doi: 10.5067/JV9DENETK13E.
    [26] LEVINSEN J F, HOWAT I M, and TSCHERNING C C. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data[J]. Journal of Glaciology, 2013, 59(215): 524–532. doi: 10.3189/2013JoG12J114.
    [27] WESSEL B, HUBER M, WOHLFART C, et al. Accuracy assessment of the global TanDEM-X digital elevation model with GPS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139: 171–182. doi: 10.1016/j.isprsjprs.2018.02.017.
    [28] GARDNER C S. Ranging performance of satellite laser altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 1061–1072. doi: 10.1109/36.175341.
    [29] MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260–273. doi: 10.1016/j.rse.2016.12.029.
    [30] SHEN X, KE C Q, YU X, et al. Evaluation of ice, cloud, and land elevation satellite-2 (ICESat-2) land ice surface heights using Airborne Topographic Mapper (ATM) data in Antarctica[J]. International Journal of Remote Sensing, 2021, 42(7): 2556–2573. doi: 10.1080/01431161.2020.1856962.
    [31] VARGA M and BAŠIĆ T. Accuracy validation and comparison of global digital elevation models over Croatia[J]. International Journal of Remote Sensing, 2015, 36(1): 170–189. doi: 10.1080/01431161.2014.994720.
    [32] AFSHARNIA H, AREFI H, and ABBASI M. Geometric correction of satellite stereo images by DEM matching without ground control points and map projection step: Tested on Cartosat-1 images[J]. Earth Science Informatics, 2022, 15(2): 1183–1199. doi: 10.1007/s12145-022-00799-3.
    [33] YE Jiang, QIANG Yuxuan, ZHANG Rui, et al. High-precision digital surface model extraction from satellite stereo images fused with ICESat-2 data[J]. Remote Sensing, 2021, 14(1): 142. doi: 10.3390/rs14010142.
    [34] HABIB M. Evaluation of DEM interpolation techniques for characterizing terrain roughness[J]. CATENA, 2021, 198: 105072. doi: 10.1016/j.catena.2020.105072.
    [35] 陈昊楠, 许诗枫, 黄艳, 等. ASTER GDEM V2的南极冰川高程误差校正及精度分析[J]. 遥感学报, 2020, 24(8): 1010–1022. doi: 10.11834/jrs.20208361.

    CHEN Haonan, XU Shifeng, HUANG Yan, et al. Vertical accuracy correction and analysis of ASTER GDEM V2 over Antarctic glacier[J]. Journal of Remote Sensing (Chinese), 2020, 24(8): 1010–1022. doi: 10.11834/jrs.20208361.
    [36] DALIAKOPOULOS I N and TSANIS I K. A SIFT-based DEM extraction approach using GEOEYE-1 satellite stereo pairs[J]. Sensors, 2019, 19(5): 1123. doi: 10.3390/s19051123.
    [37] ANAND V, OINAM B, and WIEPRECHT S. Assessment and comparison of DEM generated using cartosat-1 stereo pair data for hydrological applications[J]. Journal of the Indian Society of Remote Sensing, 2023, 51(3): 483–496. doi: 10.1007/s12524-022-01639-z.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-11
  • 修回日期:  2025-05-21
  • 网络出版日期:  2025-05-29

目录

    /

    返回文章
    返回