多平台海洋激光雷达的海洋上表层生物光学参数反演及验证

杨帆 张洪玮 李子旺 朱培志 孟凡谦 唐军武 刘秉义 吴松华

杨帆, 张洪玮, 李子旺, 等. 多平台海洋激光雷达的海洋上表层生物光学参数反演及验证[J]. 雷达学报(中英文), 2025, 14(3): 1–14. doi: 10.12000/JR25064
引用本文: 杨帆, 张洪玮, 李子旺, 等. 多平台海洋激光雷达的海洋上表层生物光学参数反演及验证[J]. 雷达学报(中英文), 2025, 14(3): 1–14. doi: 10.12000/JR25064
YANG Fan, ZHANG Hongwei, LI Ziwang, et al. Inversion and validation of ocean surface bio-optical parameters using multiplatform ocean LiDAR[J]. Journal of Radars, 2025, 14(3): 1–14. doi: 10.12000/JR25064
Citation: YANG Fan, ZHANG Hongwei, LI Ziwang, et al. Inversion and validation of ocean surface bio-optical parameters using multiplatform ocean LiDAR[J]. Journal of Radars, 2025, 14(3): 1–14. doi: 10.12000/JR25064

多平台海洋激光雷达的海洋上表层生物光学参数反演及验证

DOI: 10.12000/JR25064 CSTR: 32380.14.JR25064
基金项目: 国家自然科学基金(U2106210, 42106182),国家重点研发计划(2022YFB3901705, 2022YFB3901702),崂山实验室科技创新项目(LSKJ202201405, LSKJ202201202)
详细信息
    作者简介:

    杨 帆,硕士生,主要研究方向为海洋激光雷达数据反演及系统调试

    张洪玮,博士,副教授,主要研究方向为基于相干激光雷达的低空风切变遥感及其在航空安全方面的应用,以及海洋激光雷达在悬浮颗粒物探测方面的设计和应用

    李子旺,博士生,主要研究方向为沙氏海洋激光雷达的研制以及在悬浮颗粒物探测方面的应用

    朱培志,博士生,主要研究方向为海洋激光雷达仿真及数据反演

    孟凡谦,博士生,主要研究方向为星载激光雷达定标检验及数据处理

    唐军武,博士,研究员,主要研究方向为海洋激光雷达的开发和应用、海洋光学和水色遥感

    刘秉义,博士,副教授,主要研究方向为海洋和大气激光探测技术及算法

    吴松华,博士,教授,主要研究方向为激光雷达技术与大气海洋遥感

    通讯作者:

    吴松华 wush@ouc.edu.cn

  • 责任主编:狄慧鸽 Corresponding Editor: DI Huige
  • 中图分类号: TN958

Inversion and Validation of Ocean Surface Bio-optical Parameters Using Multiplatform Ocean LiDAR

Funds: The National Natural Science Foundation of China (U2106210, 42106182), National Key Research and Development Program (2022YFB3901705, 2022YFB3901702), Laoshan Laboratory Science and Technology Innovation Projects (LSKJ202201405, LSKJ202201202)
More Information
  • 摘要: 海洋上表层生物光学参数的垂直特征对评估海洋初级生产力和碳循环至关重要。虽然激光雷达技术能够有效探测这些参数,但受限于经验模型在不同区域的适应性差异,反演结果通常存在较大偏差。针对该问题,该研究基于2023—2024年中国南海海域多平台激光雷达联合观测数据,结合区域适应性生物光学模型,实现了该海域生物光学参数剖面的高精度反演。其中,叶绿素a浓度剖面反演结果与原位数据一致性较高,决定系数(R2)为0.84,平均均方根误差(RMSE)为0.14 μg·L–1。通过误差传递模型量化分析表明,不同波段的光学敏感性差异显著影响误差分布,蓝光波段有效探测深度为70 m,显著高于绿光波段的58 m。蓝光波段在次表层叶绿素最大值层(SCML)的自身反演偏差较绿光波段低0.18 μg·L–1,进而阐明了各波段光学特性与自身偏差的内在关联,为提升复杂水体生物光学参数剖面反演的可靠性和开展误差分析提供了有效方法。

     

  • 图  1  船载海洋激光雷达系统图

    Figure  1.  Shipboard LiDAR system diagram

    图  2  机载海洋激光雷达系统图

    Figure  2.  System diagram of airborne LiDAR

    图  3  中国南海试验区域两个航次的站点位置图

    Figure  3.  Site location map of two voyages in the South China Sea experimental area

    图  4  数据反演流程图

    Figure  4.  Data inversion flowchart

    图  5  船载海洋激光雷达T4站点部分测量数据反演结果示例

    Figure  5.  Example of inversion results of some measurements at the T4 site of a shipborne ocean LiDAR

    图  6  使用通用参数和拟合系数拟合后,激光雷达反演结果与RBR测量结果对比图

    Figure  6.  Comparison chart of laser LiDAR inversion results and RBR measurement results after fitting with general parameters and fitting coefficients

    图  7  利用拟合系数反演出的一些典型站点的叶绿素a浓度剖面与利用原位RBR测量结果比较

    Figure  7.  Comparison of chlorophyll-a concentration profiles of some typical sites using fitting coefficients and in-situ RBR measurements

    图  8  典型站点的船载与机载海洋激光雷达反演的叶绿素a浓度剖面与原位RBR测量结果比较、标准差比较以及相应的信噪比剖面

    Figure  8.  Comparison of chlorophyll-a concentration profiles inverted by shipborne and airborne ocean LiDAR at typical sites with in-situ RBR measurement results, standard deviation comparison, and corresponding signal-to-noise ratio profiles

    图  9  A1站点和B2站点的船载与机载海洋激光雷达反演的颗粒有机碳浓度剖面与元素分析仪测量结果比较

    Figure  9.  Comparison of POC concentration profiles retrieved from shipborne and airborne ocean LiDAR at A1 and B2 stations with water sampling measurement results

    图  10  A1, B2站点理论计算叶绿素a浓度误差

    Figure  10.  Theoretical calculation error of chlorophyll-a concentration at A1 and B2 stations

    表  1  船载雷达系统参数表

    Table  1.   Parameter table of shipboard LiDAR system

    分系统 参数 描述
    发射
    系统
    单脉冲能量 200 mJ @ 532 nm;
    120 mJ @ 355 nm;
    400 mJ @ 1064 nm
    重复频率 20 Hz
    脉宽 ≤ 5 ns
    发散角 ≤ 0.5 mrad
    光束直径 ≈ 6.5 mm
    接收
    系统
    望远镜直径 60 mm
    视场 16~60 mrad
    滤色片 1 nm @ 532 nm;
    3 nm @ 355 nm, 405 nm;
    10 nm @ 680 nm
    探测器 Photomultiplier tube
    采集
    系统
    AD分辨率 14 bits
    采样频率 PC @ 1 GHz
    下载: 导出CSV

    表  2  机载雷达系统参数表

    Table  2.   Parameter table of airborne LiDAR system

    分系统 参数 描述
    发射
    系统
    单脉冲能量 2 mJ @ 486.1 nm;
    5 mJ @ 532.2 nm
    重复频率 100 Hz
    脉宽 2.5 ns @ 486.1 nm;
    6 ns @ 532.2 nm
    发散角 5 mrad
    接收
    系统
    望远镜直径 200 mm
    视场 28 mrad
    接收光学带宽 0.44 nm @ 486.1 nm;
    0.60 nm @ 532.2 nm
    探测器 Photomultiplier tube
    采集系统 采样频率 1 ns
    下载: 导出CSV

    表  3  辅助参数说明

    Table  3.   Auxiliary parameter description

    数据来源 参数 说明
    RBR水质监测仪
    (RBR XR-420, RBR, Canada)
    Chla 叶绿素a浓度剖面
    Global Ocean Biogeochemistry
    Analysis and Forecast
    Chla 叶绿素a浓度
    元素分析仪(UNICUBE, Elementar,
    germany)
    POC 颗粒有机碳浓度
    下载: 导出CSV
  • [1] BEHRENFELD M J and BOSS E. Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass[J]. Journal of Marine Research, 2006, 64(3): 431–451. doi: 10.1357/002224006778189563.
    [2] BREWIN R J W, DALL’OLMO G, PARDO S, et al. Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals[J]. Remote Sensing of Environment, 2016, 183: 82–97. doi: 10.1016/j.rse.2016.05.005.
    [3] LE Chengfeng, ZHOU Xueying, HU Chuanmin, et al. A color-index-based empirical algorithm for determining particulate organic carbon concentration in the ocean from satellite observations[J]. Journal of Geophysical Research: Oceans, 2018, 123(10): 7407–7419. doi: 10.1029/2018JC014014.
    [4] DICKEY T, LEWIS M, and CHANG G. Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations[J]. Reviews of Geophysics, 2006, 44(1): RG1001. doi: 10.1029/2003RG000148.
    [5] VASILKOV A P, GOLDIN Y A, GUREEV B A, et al. Airborne polarized lidar detection of scattering layers in the ocean[J]. Applied Optics, 2001, 40(24): 4353–4364. doi: 10.1364/AO.40.004353.
    [6] COLLISTER B L, ZIMMERMAN R C, SUKENIK C I, et al. Remote sensing of optical characteristics and particle distributions of the upper ocean using shipboard lidar[J]. Remote Sensing of Environment, 2018, 215: 85–96. doi: 10.1016/j.rse.2018.05.032.
    [7] CHEN Peng and PAN Delu. Ocean optical profiling in South China Sea using airborne LiDAR[J]. Remote Sensing, 2019, 11(15): 1826. doi: 10.3390/rs11151826.
    [8] LIU Qi, WU Songhua, LIU Bingyi, et al. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: Design and measurements in the Western Pacific[J]. Optics Express, 2022, 30(6): 8927–8948. doi: 10.1364/OE.449554.
    [9] YUAN Dapeng, MAO Zhihua, CHEN Peng, et al. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar[J]. Optics Express, 2022, 30(16): 29564–29583. doi: 10.1364/OE.463146.
    [10] ZHANG Kai, CHEN Yatong, ZHAO Hongkai, et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar[J]. Research, 2023, 6: 0201. doi: 10.34133/research.0201.
    [11] SHANGGUAN Mingjia, LIAO Zhuoyang, GUO Yirui, et al. Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar[J]. Optics Express, 2023, 31(16): 25398–25414. doi: 10.1364/OE.493660.
    [12] SHANGGUAN Mingjia, GUO Yirui, and LIAO Zhuoyang. Shipborne single-photon fluorescence oceanic lidar: Instrumentation and inversion[J]. Optics Express, 2024, 32(6): 10204–10218. doi: 10.1364/OE.515477.
    [13] ZHAO Hongkai, ZHOU Yudi, GU Qiuling, et al. Lidar-observed diel vertical variations of inland chlorophyll a concentration[J]. Remote Sensing, 2024, 16(19): 3579. doi: 10.3390/rs16193579.
    [14] SANG Xuan, MAO Zhihua, LI Youzhi, et al. Observations of optical properties and chlorophyll-a concentration in Qiandao Lake using shipborne lidar[J]. Remote Sensing, 2024, 16(24): 4663. doi: 10.3390/rs16244663.
    [15] LI Xinye, CHEN Peng, ZHANG Zhenhua, et al. Vertical structure observation from spaceborne lidar ICESat-2 in East China Sea[J]. Optics Express, 2025, 33(2): 2847–2865. doi: 10.1364/OE.540111.
    [16] ZHU Peizhi, TANG Junwu, SONG Xiaoquan, et al. Future spaceborne oceanographic lidar: Exploring the effects of large off-nadir angles on signal dynamic range and depth aliasing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5701711. doi: 10.1109/TGRS.2025.3545669.
    [17] ZHOU Yudi, CHEN Weibiao, CUI Xiaoyu, et al. Validation of the analytical model of oceanic lidar returns: Comparisons with Monte Carlo simulations and experimental results[J]. Remote Sensing, 2019, 11(16): 1870. doi: 10.3390/rs11161870.
    [18] HE Huixin, LIU Qi, TANG Junwu, et al. Validation of the polarized Monte Carlo model of shipborne oceanic lidar returns[J]. Optics Express, 2023, 31(26): 43250–43268. doi: 10.1364/OE.511445.
    [19] CHEN Su, CHEN Peng, DING Lei, et al. A new semi-analytical mc model for oceanic LIDAR inelastic signals[J]. Remote Sensing, 2023, 15(3): 684. doi: 10.3390/rs15030684.
    [20] LIU Qun, LIU Dong, BAI Jian, et al. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 2018, 26(23): 30278–30291. doi: 10.1364/OE.26.030278.
    [21] LIU Qun, CUI Xiaoyu, CHEN Weibiao, et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: Experiment-based comparisons and multiple scattering effects analyses[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106638. doi: 10.1016/j.jqsrt.2019.106638.
    [22] ZHOU Yudi, CHEN Yang, ZHAO Hongkai, et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties[J]. Light: Science & Applications, 2022, 11(1): 261. doi: 10.1038/s41377-022-00951-0.
    [23] CHEN Yatong, CUI Xiaoyu, GU Qiuling, et al. This is MATE: A multiple scAttering correcTion rEtrieval algorithm for accurate lidar profiling of seawater optical properties[J]. Remote Sensing of Environment, 2024, 307: 114166. doi: 10.1016/j.rse.2024.114166.
    [24] ZHANG Zhenhua, CHEN Peng, MAO Zhihua, et al. A novel fast multiple-scattering approximate model for oceanographic lidar[J]. Remote Sensing, 2021, 13(18): 3677. doi: 10.3390/rs13183677.
    [25] COLLIS R T H and RUSSELL P B. Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption[M]. HINKLEY E D. Laser Monitoring of the Atmosphere. Berlin, Heidelberg: Springer, 1976: 71–151. doi: 10.1007/3-540-07743-X_18.
    [26] KLETT J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211–220. doi: 10.1364/AO.20.000211.
    [27] FERNALD F G, HERMAN B M, and REAGAN J A. Determination of aerosol height distributions by lidar[J]. Journal of Applied Meteorology, 1972, 11(3): 482–489. doi: 10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2.
    [28] MOREL A and MARITORENA S. Bio-optical properties of oceanic waters: A reappraisal[J]. Journal of Geophysical Research: Oceans, 2001, 106(C4): 7163–7180. doi: 10.1029/2000JC000319.
    [29] GORDON H R. Interpretation of airborne oceanic lidar: Effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996–3001. doi: 10.1364/AO.21.002996.
    [30] WALKER R E and MCLEAN J W. Lidar equations for turbid media with pulse stretching[J]. Applied Optics, 1999, 38(12): 2384–2397. doi: 10.1364/AO.38.002384.
    [31] CHEN Peng, PAN Delu, MAO Zhihua, et al. Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer[J]. Optics & Laser Technology, 2019, 111: 1–5. doi: 10.1016/j.optlastec.2018.09.028.
    [32] CHEN Peng, JAMET C, MAO Zhihua, et al. OLE: A novel oceanic lidar emulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9730–9744. doi: 10.1109/TGRS.2020.3035381.
    [33] SON Y B, GARDNER W D, MISHONOV A V, et al. Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico[J]. Remote Sensing of Environment, 2009, 113(1): 50–61. doi: 10.1016/j.rse.2008.08.011.
    [34] TELLINGHUISEN J. Statistical error propagation[J]. The Journal of Physical Chemistry A, 2001, 105(15): 3917–3921. doi: 10.1021/jp003484u.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-05-20
  • 网络出版日期:  2025-05-29

目录

    /

    返回文章
    返回