基于SSA算法的无人机载穿墙SAR空变运动误差补偿方法

张熙 于君明 刘杰 钟世超 曾小路 杨小鹏 刘仁杰

张熙, 于君明, 刘杰, 等. 基于SSA算法的无人机载穿墙SAR空变运动误差补偿方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25048
引用本文: 张熙, 于君明, 刘杰, 等. 基于SSA算法的无人机载穿墙SAR空变运动误差补偿方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25048
ZHANG Xi, YU Junming, LIU Jie, et al. Space-varying motion error compensation for UAV-mounted through-the-wall SAR based on SSA algorithm[J]. Journal of Radars, in press. doi: 10.12000/JR25048
Citation: ZHANG Xi, YU Junming, LIU Jie, et al. Space-varying motion error compensation for UAV-mounted through-the-wall SAR based on SSA algorithm[J]. Journal of Radars, in press. doi: 10.12000/JR25048

基于SSA算法的无人机载穿墙SAR空变运动误差补偿方法

DOI: 10.12000/JR25048 CSTR: 32380.14.JR25048
基金项目: 国家自然科学基金(62301042),北京理工大学学术启动项目(XSQD-6120220046)
详细信息
    作者简介:

    张 熙,硕士,研究方向为无人机载穿墙雷达运动误差补偿

    于君明,研究员,研究方向为SAR成像处理及遥感应用

    刘 杰,研究员,研究方向为航天测控与卫星应用

    钟世超,副研究员,研究方向为无人机载穿墙雷达运动误差补偿、建筑物结构布局成像

    曾小路,副研究员,研究方向为穿墙雷达探测、智能无线感知与物联网技术

    杨小鹏,教授,博士生导师,研究方向为相控阵雷达及自适应阵列信号处理、探地雷达技术、穿墙雷达技术

    刘仁杰,博士生,研究方向为无人机载MIMO穿墙雷达运动误差补偿

    通讯作者:

    钟世超 zhongshichao16@163.com

  • 责任主编:林赟 Corresponding Editor: LIN Yun
  • 中图分类号: TN959.1

Space-varying Motion Error Compensation for UAV-mounted through-the-wall SAR Based on SSA Algorithm

Funds: The National Natural Science Foundation of China (62301042), Academic Start-up Project of Beijing Institute of Technology (XSQD-6120220046)
More Information
  • 摘要: 小型旋翼无人机由于其体积小、重量轻、机动性优异等特点,常作为合成孔径雷达(SAR)搭载平台,在低空复杂环境探测中具有广阔应用前景。然而,由于小型旋翼无人机低空飞行过程运动误差随机性强,且受限于旋翼无人机载重限制,无法搭载高精度定位设备,导致运动误差成为影响小型旋翼无人机载穿墙SAR成像精度的关键问题。传统基于逐步逼近(SSA)方法的误差补偿算法基于聚束SAR提出,假设场景中所有像素点的相位误差相同,条带宽波束条件下明显不适用。该文提出一种基于SSA算法的宽波束穿墙SAR空变运动误差补偿方法,该方法结合后向投影(BP)算法对旋翼无人机运动误差的雷达回波进行建模,在SAR图像熵评估准则下,利用SSA优化算法估计天线相位中心对成像场景中每个像素点的相位误差,通过BP算法可对每个像素点进行高精度相位补偿,解决了宽波束穿墙SAR运动误差空变问题。仿真与实测数据处理结果表明,该算法能够在宽波束情况下,对空变运动误差完成精确补偿,使场景中多目标均完成良好聚焦,有效解决了宽波束穿墙SAR运动误差空变问题。

     

  • 图  1  含有空变运动误差的SAR几何示意图

    Figure  1.  SAR geometry with space-varying motion error

    图  2  点目标仿真示意图

    Figure  2.  Simulation diagram of point target

    图  3  点目标成像结果

    Figure  3.  Point target imaging results

    图  4  目标1距离向与方位向剖面

    Figure  4.  Range and azimuth profile of target 1

    图  5  目标4距离向与方位向剖面

    Figure  5.  Range and azimuth profile of target 4

    图  6  估计APC与精确APC

    Figure  6.  Estimated APC and accurate APC

    图  7  成像结果对比

    Figure  7.  Comparison of imaging results

    图  8  不同信噪比条件下算法聚焦性能对比

    Figure  8.  Comparison of the focusing performance of algorithms under different signal-to-noise ratio conditions

    图  9  旋翼无人机载宽波束穿墙雷达

    Figure  9.  Wide beam through-the-wall radar equipped on rotorcraft UAV

    图  10  空场景实验

    Figure  10.  Empty scene experiment

    图  11  无人机飞行轨迹(空场景)

    Figure  11.  UAV flight path (empty scene)

    图  12  空场景实测数据处理结果

    Figure  12.  Data processing results of empty scene experiment

    图  13  空场景目标2距离向与方位向剖面

    Figure  13.  Empty scene range and azimuth profile of target 2

    图  14  穿墙场景实验

    Figure  14.  Through-the-wall scene experiment

    图  15  无人机飞行轨迹(穿墙场景)

    Figure  15.  UAV flight path (through-the-wall scene)

    图  16  穿墙场景实测数据处理结果

    Figure  16.  Data processing results of through-the-wall experiment

    图  17  穿墙场景目标2距离向与方位向剖面

    Figure  17.  Through-the-wall scene range and azimuth profile of target 2

    1  BP-SSA算法流程

    1.   BP-SSA algorithm flow

     输入:初始化参数,搜索阶段$i = 1$,搜索步长${\varDelta _i} = 0.02$,
        APC位置$\Delta {\tilde {\boldsymbol{P}}}$,终止迭代门限${T_1}$,终止算法门限${T_2}$
     输出:APC位置误差估计值$\Delta {{\tilde {\boldsymbol{P}}}_{i,k}}$
     1:while ${D_1} > {T_1}$ do
     2: while ${D_2} > {T_2}$ do
     3:  for $k \leftarrow 1,K$ do
     4:   当前无人机位置候选位置误差
     5:   $ \begin{gathered} \Delta {{{\tilde {\boldsymbol{P}}}}_1} = \Delta {{{\tilde {\boldsymbol{P}}}}_{i,k}} \\ \Delta {{{\tilde {\boldsymbol{P}}}}_2} = \Delta {{{\tilde {\boldsymbol{P}}}}_{i,k}} + {\varDelta _i} \\ \Delta {{{\tilde {\boldsymbol{P}}}}_3} = \Delta {{{\tilde {\boldsymbol{P}}}}_{i,k}} - {\varDelta _i} \\ \end{gathered} $
     6:   更新无人机位置,并进行BP成像
     7:   $ \Delta {{\tilde {\boldsymbol{P}}}_{i,k}} = \mathop {\arg \min }\limits_{\Delta {{{\tilde {\boldsymbol{P}}}}_j}} [{H} (\Delta {{\tilde {\boldsymbol{P}}}_j})] \cdots j = 1,2,3 $
     8:   end
     9: $ {D_1} = \left| {\dfrac{{{H} (\Delta {{{\tilde {\boldsymbol{P}}}}_{i,1}}) - {H} (\Delta {{{\tilde {\boldsymbol{P}}}}_{i,k}})}}{{{H} (\Delta {{{\tilde {\boldsymbol{P}}}}_{i,1}})}}} \right| $
     10: end
     11: $ {D_2} = \left| {\dfrac{{{H} (\Delta {{{\tilde {\boldsymbol{P}}}}_{i - 1,K}}) - {H} (\Delta {{{\tilde {\boldsymbol{P}}}}_{i,k}})}}{{{H} (\Delta {{{\tilde {\boldsymbol{P}}}}_{i - 1,K}})}}} \right| $
     12: $ i = i + 1{\text{, }}{\varDelta _i} = \dfrac{{{\varDelta _{i - 1}}}}{2} $
     13:end
    下载: 导出CSV

    表  1  雷达系统仿真参数设置

    Table  1.   Radar system simulation parameter setting

    参数 数值
    信号带宽 500 MHz
    雷达起始频率 2.7 GHz
    调频斜率 $0.927 \times {10^{12}}{\text{ Hz/s}}$
    脉冲重复频率 50 Hz
    平台飞行速度 1 m/s
    下载: 导出CSV

    表  2  目标1与目标4的PSLR

    Table  2.   The PSLR of target 1 and target 4

    误差补偿 目标1
    PSLR (dB)
    目标4
    PSLR (dB)
    无误差 –23.91 –20.13
    含有误差 –9.32 –8.53
    所提算法补偿后 –21.82 –20.41
    下载: 导出CSV

    表  3  成像质量与效率

    Table  3.   Imaging quality and efficiency

    参数 数值
    T1, T2 0.001 0.010 0.100
    图像熵 5.4152 5.6293 5.6409
    迭代次数 10 5 2
    迭代时间(s) 10646 8816 2709
    下载: 导出CSV

    表  4  雷达系统参数

    Table  4.   Radar system parameter

    参数 数值
    信号带宽 408 MHz
    雷达起始频率 2.67 GHz
    调频斜率 $1.136 \times {10^{12}}{\text{ Hz/s}}$
    脉冲重复频率 1923 Hz
    平台飞行速度 约1.3 m/s
    采样率 10 MHz
    收发天线间距 0.12 m
    下载: 导出CSV
  • [1] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House Publishers, 2005: 108–110.
    [2] 金秋, 王雨晗, 杨果, 等. 高速平台SAR脉内多普勒效应误差分析和校正[J]. 雷达科学与技术, 2023, 21(3): 237–246. doi: 10.3969/j.issn.1672-2337.2023.03.001.

    JIN Qiu, WANG Yuhan, YANG Guo, et al. Error analysis and correction of Doppler effect for SAR on high-speed platform[J]. Radar Science and Technology, 2023, 21(3): 237–246. doi: 10.3969/j.issn.1672-2337.2023.03.001.
    [3] 张健丰. 微小型无人机载FMCW SAR成像技术研究与系统实现[D]. 长沙: 国防科技大学, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000036.

    ZHANG Jianfeng. Imaging technology research and system implementation for microminiature UAV FMCW SAR[D]. Changsha: National University of Defense Technology, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000036.
    [4] 李嘉诚, 马彦恒, 董健, 等. 小型无人机载战场侦察雷达关键技术研究[J]. 飞航导弹, 2015(8): 37–41. doi: 10.16338/j.issn.1009-1319.2015.08.07.

    LI Jiacheng, MA Yanheng, DONG Jian, et al. Research on key technology of battlefield reconnaissance radar carried by small UAV[J]. Aerospace Technology, 2015(8): 37–41. doi: 10.16338/j.issn.1009-1319.2015.08.07.
    [5] 褚丽娜, 郭利, 马彦恒, 等. 小型旋翼无人机载圆周SAR成像研究综述[J]. 兵器装备工程学报, 2015, 46(2): 303–316.

    CHU Lina, GUO Li, MA Yanheng, et al. Review of circular SAR imaging by a small rotor unmanned aerial vehicle[J]. Journal of Ordnance Equipment Engineering, 2015, 46(2): 303–316.
    [6] 李悦丽, 李泽森, 王建, 等. 多旋翼无人机载SAR的视线运动误差修正与补偿[J]. 雷达学报, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.

    LI Yueli, LI Zesen, WANG Jian, et al. Modification and compensation of the line-of-sight motion error for multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.
    [7] WANG Zhanze, LIU Feifeng, ZENG Tao, et al. A novel motion compensation algorithm based on motion sensitivity analysis for Mini-UAV-based BiSAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205813. doi: 10.1109/TGRS.2021.3071460.
    [8] JOYO M K, HAZRY D, FAIZ AHMED S, et al. Altitude and horizontal motion control of quadrotor UAV in the presence of air turbulence[C]. 2013 IEEE Conference on Systems, Process & Control, Kuala Lumpur, Malaysia, 2013: 16–20. doi: 10.1109/SPC.2013.6735095.
    [9] CHENG Yao, QIU Xiaolan, and MENG Dadi. Precise motion compensation of multi-rotor UAV-borne SAR based on improved PTA[J]. Remote Sensing, 2024, 16(14): 2678. doi: 10.3390/rs16142678.
    [10] CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
    [11] RAN Lei, LIU Zheng, ZHANG Lei, et al. An autofocus algorithm for estimating residual trajectory deviations in synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3408–3425. doi: 10.1109/TGRS.2017.2670785.
    [12] ZHANG Tao, LIAO Guisheng, LI Yachao, et al. An improved time-domain autofocus method based on 3-D motion errors estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5223816. doi: 10.1109/TGRS.2021.3137422.
    [13] CALLOWAY T M and DONOHOE G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617–621. doi: 10.1109/7.272285.
    [14] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
    [15] 蒋锐, 朱岱寅, 朱兆达. 一种用于条带模式SAR成像的自聚焦算法[J]. 航空学报, 2010, 31(12): 2385–2392.

    JIANG Rui, ZHU Daiyin, and ZHU Zhaoda. A novel approach to strip-map SAR autofocus[J]. Acta Aeronauticaet Astronautica Sinica, 2010, 31(12): 2385–2392.
    [16] ASH J N. An autofocus method for backprojection imagery in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 104–108. doi: 10.1109/LGRS.2011.2161456.
    [17] LI Xi, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442.
    [18] ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J] IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/JSTARS.2016.2577588.
    [19] 张法桐, 付耀文, 杨威, 等. 微小型无人机载FMCW SAR宽波束运动补偿算法[J]. 系统工程与电子技术, 2024, 46(10): 3303–3311. doi: 10.12305/j.issn.1001-506X.2024.10.08.

    ZHANG Fatong, FU Yaowen, YANG Wei, et al. Wide-beam motion compensation algorithm for micro-UAV FMCW SAR[J]. Systems Engineering and Electronics, 2024, 46(10): 3303–3311. doi: 10.12305/j.issn.1001-506X.2024.10.08.
    [20] 胡克彬, 张晓玲, 师君, 等. 基于图像强度最优的SAR高精度运动补偿方法[J]. 雷达学报, 2015, 4(1): 60–69. doi: 10.12000/JR15007.

    HU Kebin, ZHANG Xiaoling, SHI Jun, et al. A high-precision motion compensation method for SAR based on image intensity optimization[J]. Journal of Radars, 2015, 4(1): 60–69. doi: 10.12000/JR15007.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 修回日期:  2025-07-10
  • 网络出版日期:  2025-08-18

目录

    /

    返回文章
    返回