基于改进SE-ResNet50的激光雷达晴空湍流识别研究

庄子波 陈珺 何沛林 张红颖 靳国华 罗雄

庄子波, 陈珺, 何沛林, 等. 基于改进SE-ResNet50的激光雷达晴空湍流识别研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25042
引用本文: 庄子波, 陈珺, 何沛林, 等. 基于改进SE-ResNet50的激光雷达晴空湍流识别研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25042
ZHUANG Zibo, CHEN Jun, HE Peilin, et al. Research on LiDAR clear air turbulence recognition based on improved SE-ResNet50[J]. Journal of Radars, in press. doi: 10.12000/JR25042
Citation: ZHUANG Zibo, CHEN Jun, HE Peilin, et al. Research on LiDAR clear air turbulence recognition based on improved SE-ResNet50[J]. Journal of Radars, in press. doi: 10.12000/JR25042

基于改进SE-ResNet50的激光雷达晴空湍流识别研究

DOI: 10.12000/JR25042 CSTR: 32380.14.JR25042
基金项目: 中央高校基金 (3122025096),天津市自然科学基金(21JCYBJC00740)
详细信息
    作者简介:

    庄子波,硕士,副教授,主要研究方向为风切变和湍流识别、能见度仪的测量和校准、激光雷达信号处理、航空危险天气的预警和预报

    陈 珺,硕士生,主要研究方向为测风激光雷达对机场湍流的识别技术

    何沛林,硕士生,主要研究方向为测风激光雷达对机场湍流的预测技术

    张红颖,博士,教授,主要研究方向为机场智能信息处理、图像处理与计算机视觉

    靳国华,硕士,高级工程师,主要研究方向为激光雷达

    罗 雄,硕士,高级工程师,主要研究方向为激光雷达

    通讯作者:

    张红颖 carole_zhang0716@163.com

  • 责任主编:李健兵 Corresponding Editor: LI Jianbing
  • 中图分类号: TN957

Research on LiDAR Clear Air Turbulence Recognition Based on Improved SE-ResNet50

Funds: Central University Fund (3122025096), Tianjin Natural Science Foundation (21JCYBJC00740)
More Information
  • 摘要: 针对机场低空区域采用激光雷达进行湍流识别时识别率低的问题,提出了使用一种改进50层挤压激励残差网络(SE-ResNet50)的晴空湍流识别方法。通过引入挤压激励模块,改进网络结构,降低了模型对特征定位的过度敏感,使网络在学习过程中选择性地突出有用的信息特征;以兰州中川机场的实测数据建立了样本数据集,依据湍流分类等级抽取弱、中、强3类等量颠簸数据建立平衡数据集进行模型训练。在相同的实验条件下,与卷积神经网络、MobileNetV2和ShuffleNetV1网络相比,改进SE-ResNet50的识别准确率分别提高了7.44%, 6.52%和4.11%,对比各个模型生成的混淆矩阵,表明该文方法的准确率达到了95%,验证了所提方法的可行性。

     

  • 图  1  EDR计算流程

    Figure  1.  EDR calculation process

    图  2  湍流图像

    Figure  2.  Turbulence images

    图  3  残差结构

    Figure  3.  Residual structure

    图  4  SENet结构

    Figure  4.  Structure of SENet

    图  5  SE-ResNet50结构

    Figure  5.  Structure of SE-ResNet50

    图  6  HardSwish激活函数

    Figure  6.  HardSwish activation function

    图  7  改进SE-ResNet50整体结构

    Figure  7.  The overall structure of improved SE-ResNet50

    图  8  训练流程

    Figure  8.  Training process

    图  9  模型损失对比

    Figure  9.  Comparison of model losses

    图  10  模型准确度对比

    Figure  10.  Comparison of model accuracy

    图  11  训练集和测试集的准确率

    Figure  11.  Accuracy of the training set and the test set

    图  12  各个模型的混淆矩阵

    Figure  12.  Confusion matrix for each model

    图  13  实际测试

    Figure  13.  Practical testing

    图  14  第15张样本图像

    Figure  14.  The 15th sample image

    表  1  测风激光雷达主要技术指标

    Table  1.   Main technical indicators of LiDAR

    参数 指标
    扫描距离分辨率 15 m/30 m/50 m
    数据刷新率 3 s
    扫描角度分辨率
    俯仰角
    最大扫描高度 158 m
    扫描方式 PPI
    探测距离范围 45~3000 m
    下载: 导出CSV

    表  2  湍流强度分级表

    Table  2.   Turbulence intensity classification table

    数值 湍流强度
    ${{\rm{EDR}}^{1/3}} < 0.1$ 无湍流
    $0.1 \le {{\rm{EDR}}^{1/3}} < 0.4$ 轻度湍流
    $0.4 \le {{\rm{EDR}}^{1/3}} < 0.7$ 中度湍流
    ${{\rm{EDR}}^{1/3}} \ge 0.7$ 严重湍流
    下载: 导出CSV

    表  3  ResNet50网络结构

    Table  3.   ResNet50 network structure

    网络层名 输出大小 50层
    Conv1 112×112 7×7, 64, stride 2
    3×3 max pool, stride 2
    Conv2_x 6×56 $ \left(\begin{array}{cc}1\times 1,& 64\\ 3\times 3,& 64\\ 1\times 1,& 256\end{array}\right) $ ×3
    Conv3_x 28×28 $ \left(\begin{array}{cc}1\times 1,& 128\\ 3\times 3,& 128\\ 1\times 1,& 512\end{array}\right) $ ×4
    Conv4_x 14×14 $ \left(\begin{array}{cc}1\times 1,& 256\\ 3\times 3,& 256\\ 1\times 1,& 1024\end{array}\right) $ ×6
    Conv5_x 7×7 $ \left(\begin{array}{cc}1\times 1,& 512\\ 3\times 3,& 512\\ 1\times 1,& 2048\end{array}\right) $ ×3
    1×1 Average pool, 1000-d
    Fc, softmax
    下载: 导出CSV

    表  4  每个模型的准确率、召回率、精确率、F1分数以及FPS

    Table  4.   Accuracy, Recall, Precision, F1-score and FPS for each model

    识别方法 准确率(%) 召回率(%) 精确率(%) F1分数 FPS
    CNN 86.82 88.22 92.55 0.9033 8.65
    MobileNetV2 87.74 91.35 93.68 0.9250 20.13
    ShuffleNetV1 90.15 93.41 95.21 0.9430 22.05
    改进SE-ResNet50 94.26 96.47 98.42 0.9743 25.22
    下载: 导出CSV

    表  5  不同模块在晴空湍流图像数据集上的消融实验结果

    Table  5.   Experimental results of ablation of different modules on clear air turbulence image dataset

    识别方法 Accuracy (%)
    ResNet50 90.13
    SE-ResNet50 91.55
    改进SE-ResNet50 94.32
    下载: 导出CSV
  • [1] WANG Fazhi, DU Wenhe, YUAN Qi, et al. A survey of structure of atmospheric turbulence in atmosphere and related turbulent effects[J]. Atmosphere, 2021, 12(12): 1608. doi: 10.3390/atmos12121608.
    [2] 吴晓庆, 胡晓丹, 杨期科, 等. 低平流层长距离水平路径小尺度湍流首次测量及非Kolmogorov湍流特征参数研究[J/OL]. 中国科学: 物理 力学 天文学. http://kns.cnki.net/kcms/detail/11.5848.N.20250326.1058.006.html, 2025.

    WU Xiaoqing, HU Xiaodan, YANG Qike, et al. First measurement of small-scale turbulence over long horizontal paths in the lower stratosphere and study of non-Kolmogorov turbulence characteristic parameters[J/OL]. ScienceChinaPhysics, Mechanics & Astronogy. http://kns.cnki.net/kcms/detail/11.5848.N.20250326.1058.006.html, 2025.
    [3] PROSSER M C, WILLIAMS P D, MARLTON G J, et al. Evidence for large increases in clear-air turbulence over the past four decades[J]. Geophysical Research Letters, 2023, 50(11): e2023GL103814. doi: 10.1029/2023GL103814.
    [4] STORER L N, WILLIAMS P D, and JOSHI M M. Global response of clear-air turbulence to climate change[J]. Geophysical Research Letters, 2017, 44(19): 9976–9984. doi: 10.1002/2017gl074618.
    [5] SMITH I H, WILLIAMS P D, and SCHIEMANN R. Clear-air turbulence trends over the North Atlantic in high-resolution climate models[J]. Climate Dynamics, 2023, 61(7/8): 3063–3079. doi: 10.1007/s00382-023-06694-x.
    [6] 廉文超, 宋小全, 郝朝阳, 等. 双向长短期记忆网络在激光雷达风廓线预测的应用[J]. 光学学报, 2024, 44(24): 2401004. doi: 10.3788/AOS240891.

    LIAN Wenchao, SONG Xiaoquan, HAO Zhaoyang, et al. Application of bidirectional long short-term memory network in Doppler Lidar wind profile prediction[J]. Acta Optica Sinica, 2024, 44(24): 2401004. doi: 10.3788/AOS240891.
    [7] GUO Feng, MANN J, PEÑA A, et al. The space-time structure of turbulence for lidar-assisted wind turbine control[J]. Renewable Energy, 2022, 195: 293–310. doi: 10.1016/j.renene.2022.05.133.
    [8] CHAN P W. LIDAR-based turbulence intensity calculation using glide-path scans of the Doppler LIght Detection And Ranging (LIDAR) systems at the Hong Kong International Airport and comparison with flight data and a turbulence alerting system[J]. Meteorologische Zeitschrift, 2010, 19(6): 549–563. doi: 10.1127/0941-2948/2010/0471.
    [9] 蒋立辉, 陈红, 庄子波, 等. 小波不变矩的低空风切变识别[J]. 红外与激光工程, 2014, 43(11): 3783–3787. doi: 10.3969/j.issn.1007-2276.2014.11.048.

    JIANG Lihui, CHEN Hong, ZHUANG Zibo, et al. Recognition on low-level wind shear of wavelet invariant moments[J]. Infrared and Laser Engineering, 2014, 43(11): 3783–3787. doi: 10.3969/j.issn.1007-2276.2014.11.048.
    [10] SMALIKHO I N and BANAKH V A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer[J]. Atmospheric Measurement Techniques, 2017, 10(11): 4191–4208. doi: 10.5194/amt-10-4191-2017.
    [11] BANAKH V A, SMALIKHO I N, and ZALOZNAYA I V. Possibility of clear air turbulence localization with lidar[J]. Atmospheric and Oceanic Optics, 2023, 36(2): 132–136. doi: 10.1134/S102485602303003X.
    [12] BALATTI D, HADDAD KHODAPARAST H, FRISWELL M I, et al. Aircraft turbulence and gust identification using simulated in-flight data[J]. Aerospace Science and Technology, 2021, 115: 106805. doi: 10.1016/j.ast.2021.106805.
    [13] 杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098.

    YANG Hongyu and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098.
    [14] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736. doi: 10.7527/S1000-6893.2020.24736.

    YE Shuran, ZHANG Zhen, WANG Yiwei, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736. doi: 10.7527/S1000-6893.2020.24736.
    [15] 王泽洋, 朱月, 安岩. 基于深度卷积生成对抗网络的大气湍流相位屏生成方法[J]. 激光与光电子学进展, 2024, 61(21): 2101001. doi: 10.3788/LOP232738.

    WANG Zeyang, ZHU Yue, and AN Yan. Method for generating atmospheric turbulence phase screen based on deep convolutional generative-adversarial networks[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2101001. doi: 10.3788/LOP232738.
    [16] 侯宇超, 王洁, 李洪涛, 等. 基于多尺度胶囊Swin Transformer的SAR图像目标识别方法[J]. 通信学报, 2025, 46(3): 274–290. doi: 10.11959/j.issn.1000-436x.2025045.

    HOU Yuchao, WANG Jie, LI Hongtao, et al. Multi-scale capsule Swin Transformer-based method for SAR image target recognition[J]. Journal on Communications, 2025, 46(3): 274–290. doi: 10.11959/j.issn.1000-436x.2025045.
    [17] SHARMA A K, NANDAL A, DHAKA A, et al. HOG transformation based feature extraction framework in modified Resnet50 model for brain tumor detection[J]. Biomedical Signal Processing and Control, 2023, 84: 104737. doi: 10.1016/j.bspc.2023.104737.
    [18] ZHU Qiming, ZHUANG Hongwei, ZHAO Mi, et al. A study on expression recognition based on improved mobilenetV2 network[J]. Scientific Reports, 2024, 14(1): 8121. doi: 10.1038/s41598-024-58736-x.
    [19] 郭立民, 黄文青, 陈前, 等. 轻量化的ML-SNet雷达复合干扰识别算法[J]. 系统工程与电子技术, 2025, 47(2): 418–427. doi: 10.12305/j.issn.1001-506X.2025.02.09.

    GUO Limin, HUANG Wenqing, CHEN Qian, et al. Lightweight algorithm of ML-SNet radar compound jamming recognition[J]. Systems Engineering and Electronics, 2025, 47(2): 418–427. doi: 10.12305/j.issn.1001-506X.2025.02.09.
    [20] KARADDI S H and SHARMA L D. Classification of lung disorders in chest multi-modal images using hyper-Parameter tuning and modified ResNet50[J]. Multimedia Tools and Applications, 2024: 1–25. doi: 10.1007/s11042-024-20097-y.
    [21] 张洪玮, 吴松华, 尹嘉萍, 等. 基于短距相干测风激光雷达的机场低空风切变观测[J]. 红外与毫米波学报, 2018, 37(4): 468–476. doi: 10.11972/j.issn.1001-9014.2018.04.015.

    ZHANG Hongwei, WU Songhua, YIN Jiaping, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 468–476. doi: 10.11972/j.issn.1001-9014.2018.04.015.
    [22] 李策, 赵培娥, 彭涛, 等. 3维激光测风雷达技术研究[J]. 激光技术, 2017, 41(5): 703–707. doi: 10.7510/jgjs.issn.1001-3806.2017.05.017.

    LI Ce, ZHAO Peie, PENG Tao, et al. Technical research of 3-D wind lidar[J]. Laser Technology, 2017, 41(5): 703–707. doi: 10.7510/jgjs.issn.1001-3806.2017.05.017.
    [23] 庄子波, 陈星, 台宏达, 等. 基于奇异值分解的激光雷达湍流预警算法[J]. 光学精密工程, 2019, 27(3): 671–679. doi: 10.3788/OPE.20192703.0671.

    ZHUANG Zibo, CHEN Xing, TAI Hongda, et al. Turbulence alerting algorithm based on singular value decomposition of Lidar[J]. Optics and Precision Engineering, 2019, 27(3): 671–679. doi: 10.3788/OPE.20192703.0671.
    [24] CHAN P W and LEE Y F. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(7): 469–481. doi: 10.1631/jzus.A1200236.
    [25] 陈小龙, 何肖阳, 邓振华, 等. 雷达微弱目标智能化处理技术与应用[J]. 雷达学报(中英文), 2024, 13(3): 501–524. doi: 10.12000/JR23160.

    CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, et al. Radar intelligent processing technology and application for weak target[J]. Journal of Radars, 2024, 13(3): 501–524. doi: 10.12000/JR23160.
    [26] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [27] QIAO Weiliang, GUO Hongtongyang, HUANG Enze, et al. Two-phase flow pattern identification by embedding double attention mechanisms into a convolutional neural network[J]. Journal of Marine Science and Engineering, 2023, 11(4): 793. doi: 10.3390/jmse11040793.
    [28] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
    [29] WANG Hua, YING Jichong, LIU Jianlei, et al. Harnessing ResNet50 and SENet for enhanced ankle fracture identification[J]. BMC Musculoskeletal Disorders, 2024, 25(1): 250. doi: 10.1186/s12891-024-07355-8.
    [30] YOO J, JIN Y, KO B, et al. k-labelsets method for multi-label ECG signal classification based on SE-ResNet[J]. Applied Sciences, 2021, 11(16): 7758. doi: 10.3390/app11167758.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 修回日期:  2025-05-13
  • 网络出版日期:  2025-05-29

目录

    /

    返回文章
    返回