深度强化学习驱动的低空安全通信:感通一体化设计

魏志强 张家烁 刘凡 杨在 费泽松

魏志强, 张家烁, 刘凡, 等. 深度强化学习驱动的低空安全通信:感通一体化设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25025
引用本文: 魏志强, 张家烁, 刘凡, 等. 深度强化学习驱动的低空安全通信:感通一体化设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25025
WEI Zhiqiang, ZHANG Jiashuo, LIU Fan, et al. Low-altitude secure communication driven by deep reinforcement learning: An integrated sensing and communication design[J]. Journal of Radars, in press. doi: 10.12000/JR25025
Citation: WEI Zhiqiang, ZHANG Jiashuo, LIU Fan, et al. Low-altitude secure communication driven by deep reinforcement learning: An integrated sensing and communication design[J]. Journal of Radars, in press. doi: 10.12000/JR25025

深度强化学习驱动的低空安全通信:感通一体化设计

DOI: 10.12000/JR25025 CSTR: 32380.14.JR25025
基金项目: 国家自然科学基金(12371464, 62331023, 62471039),陕西省秦创原引用高层次创新创业人才项目(QCYRCXM-2023-094),广东省基础与应用基础研究面上项目(2024A1515011218)
详细信息
    作者简介:

    魏志强,博士,教授,主要研究方向为高移动信道传输方法、高移动网络优化方法、感通一体化技术等

    张家烁,硕士生,主要研究方向为深度强化学习在高移动网络优化中的应用

    刘 凡,博士,教授,主要研究方向为雷达通信一体化、车联网、毫米波通信等

    杨 在,博士,教授,主要研究方向为信息处理与无线通信的数学理论与方法

    费泽松,博士,教授,主要研究方向为5G/6G移动通信关键技术、通信感知一体化、星地融合通信、智能通信、无线短距离通信等

    通讯作者:

    杨在 yangzai@xjtu.edu.cn

  • 责任主编:张海君 Corresponding Editor: ZHANG Haijun
  • 中图分类号: TN958

Low-altitude Secure Communication Driven by Deep Reinforcement Learning: An Integrated Sensing and Communication Design

Funds: The National Natural Science Foundation of China (12371464, 62331023, 62471039), Qin Chuang Yuan High-Level Innovation and Entrepreneurship Talent Program (QCYRCXM-2023-094), Guangdong Basic and Applied Basic Research Foundation (2024A1515011218)
More Information
  • 摘要: 针对低空无人机通信中的物理层安全挑战,该文提出了一种感通一体化(ISAC)方案,并据此基于深度强化学习(DRL)方法在线优化通信无人机的航迹和通信资源分配策略。所提方案通过复用通信无人机传输的人工噪声,同时实现对窃听无人机的感知与干扰,保障地面用户的安全通信服务。基于对窃听无人机的状态估计和预测,该文将在线无人机航迹和通信资源分配联合设计建模为马尔可夫决策过程,基于深度确定性策略梯度(DDPG)方法,逐步学习最优策略,动态优化通信无人机的航迹与通信资源分配策略,最大化系统的长期感知和安全通信性能。仿真结果表明,该文所提方案和优化方法在感知性能不损失的前提下,安全通信性能上优于基线方案,在感知和安全通信性能之间实现更好的折中,验证了感知和在线航迹规划的增益,也验证了深度强化学习优化方法在感知、通信和航迹规划联合设计问题中的可行性和先进性。

     

  • 图  1  所提ISAC问题框架

    Figure  1.  The proposed ISAC problem framework

    图  2  系统的视距信道模型

    Figure  2.  LoS channel model of the considered system

    图  3  面向低空安全通信的ISAC框架

    Figure  3.  The proposed ISAC framework for low-altitude secure communications

    图  4  系统初始状态示意图

    Figure  4.  The initial system state

    图  5  不同MSEmax下窃听无人机瞬时归一化跟踪误差

    Figure  5.  Instant normalized tracking error of eavesdropping UAV under different MSEmax

    图  6  不同MSEmax下安全通信用户数 CCDF

    Figure  6.  The CCDF of the number of securely served GUs under different MSEmax

    图  7  通信无人机规划航迹图

    Figure  7.  The designed trajectory of the communication UAV

    图  8  窃听无人机跟踪的归一化状态估计误差

    Figure  8.  The NMSE of eavesdropping UAV tracking

    图  9  安全通信用户数 CCDF

    Figure  9.  The CCDF of the number of securely served GUs

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数数值参数数值参数数值参数数值
    K10$ \left[{M}_{\rm e}^{x},{M}_{\rm e}^{y}\right] $$ \left[\mathrm{4,4}\right] $$ {c}_{{\theta }_{{\mathrm{be}}}} $0.1$ {V}_{\max} $$ 30\;\mathrm{m}/\mathrm{s} $
    $ \delta $1s$ \left[{M}_{\rm b}^{{\mathrm{t}}x},{M}_{\rm b}^{{\mathrm{t}}y}\right] $$ \left[\mathrm{4,4}\right] $$ {c}_{{\phi }_{{\mathrm{be}}}} $0.1$ {p}_{\max} $30 dBm
    $ {\beta }_{0}^{2} $–40 dBW$ \left[{M}_{\rm b}^{{\mathrm{r}}x},{M}_{\rm b}^{{\mathrm{r}}y}\right] $$ \left[\mathrm{4,4}\right] $$ {c}_{{\tau }_{\rm e}} $$ {10}^{-7} $N200
    $ {R}_{\min} $3 bit/s/Hz$ {R}_{{\mathrm{Leakage}}} $0.1 bit/s/Hz$ {c}_{{\upsilon }_{\rm e}} $1$ {f}_{{\mathrm{c}}} $3 GHz
    $ {\sigma }_{\rm e}^{2},{\sigma }_{k}^{2} $–90 dBm$ {q}_{\min} $$ {\left[\mathrm{0,0},50\right]}^{\rm T} $c$ 3\times {10}^{8}\;\mathrm{m}/\mathrm{s} $$ {G}_{{\mathrm{MF}}} $$ {10}^{4} $
    $ {\sigma }_{\rm b}^{2} $–50 dBm$ {q}_{\max} $$ {\left[\mathrm{500,500,100}\right]}^{\rm T} $$ {\upsilon }_{\rm e} $$ 0.1\;{{\mathrm{m}}}^{2} $$ \left[{A}_{{\mathrm{cc}}}^{x},{A}_{{\mathrm{cc}}}^{y},{A}_{{\mathrm{cc}}}^{z}\right] $$ \left[\mathrm{4,4},2\right] $
    下载: 导出CSV
  • [1] MUKHERJEE A, FAKOORIAN S A A, HUANG Jing, et al. Principles of physical layer security in multiuser wireless networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1550–1573. doi: 10.1109/SURV.2014.012314.00178.
    [2] LIU Chenxi, LEE J, and QUEK T Q S. Safeguarding UAV communications against full-duplex active eavesdropper[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 2919–2931. doi: 10.1109/TWC.2019.2906177.
    [3] WANG Qian, CHEN Zhi, MEI Weidong, et al. Improving physical layer security using UAV-enabled mobile relaying[J]. IEEE Wireless Communications Letters, 2017, 6(3): 310–313. doi: 10.1109/LWC.2017.2680449.
    [4] ZHANG Guangchi, WU Qingqing, CUI Miao, et al. Securing UAV communications via joint trajectory and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376–1389. doi: 10.1109/TWC.2019.2892461.
    [5] ZHOU Xiaobo, WU Qingqing, YAN Shihao, et al. UAV-enabled secure communications: Joint trajectory and transmit power optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4069–4073. doi: 10.1109/TVT.2019.2900157.
    [6] CUI Miao, ZHANG Guangchi, WU Qingqing, et al. Robust trajectory and transmit power design for secure UAV communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 9042–9046. doi: 10.1109/TVT.2018.2849644.
    [7] CAI Yuanxin, WEI Zhiqiang, LI Ruide, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4536–4553. doi: 10.1109/TCOMM.2020.2982152.
    [8] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [9] ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks-A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
    [10] WEI Zhongxiang, LIU Fan, MASOUROS C, et al. Toward multi-functional 6G wireless networks: Integrating sensing, communication, and security[J]. IEEE Communications Magazine, 2022, 60(4): 65–71. doi: 10.1109/MCOM.002.2100972.
    [11] SU Nanchi, LIU Fan, WEI Zhongxiang, et al. Secure dual-functional radar-communication transmission: Exploiting interference for resilience against target eavesdropping[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7238–7252. doi: 10.1109/TWC.2022.3156893.
    [12] SU Nanchi, LIU Fan, and MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 83–95. doi: 10.1109/TWC.2020.3023164.
    [13] HUANG Chongwen, YANG Zhaohui, ALEXANDROPOULOS G C, et al. Multi-Hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1663–1677. doi: 10.1109/JSAC.2021.3071836.
    [14] SUN Yan, XU Dongfang, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4281–4298. doi: 10.1109/TCOMM.2019.2900630.
    [15] YOU Changsheng and ZHANG Rui. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753–3768. doi: 10.1109/TWC.2020.2978073.
    [16] WEI Zhiqiang, LIU Fan, LIU Chang, et al. Integrated sensing, navigation, and communication for secure UAV networks with a mobile eavesdropper[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7060–7078. doi: 10.1109/TWC.2023.3337148.
    [17] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv preprint arXiv: 1312.5602, 2013. doi: 10.48550/arXiv.1312.5602.
    [18] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv: 1509.02971, 2015. doi: 10.48550/arXiv.1509.02971.
    [19] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017. doi: 10.48550/arXiv.1707.06347.
    [20] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[J]. arXiv preprint arXiv: 1801.01290, 2018. doi: 10.48550/arXiv.1801.01290.
    [21] GAN Xu, HUANG Chongwen, YANG Zhaohui, et al. Bayesian learning for double-RIS aided ISAC systems with superimposed pilots and data[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(5): 766–781. doi: 10.1109/JSTSP.2024.3408071.
    [22] QIN Yunhui, ZHANG Zhongshan, LI Xulong, et al. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8158–8169. doi: 10.1109/TWC.2023.3260304.
    [23] ZHU Yuqian, LI Ming, LIU Yang, et al. DRL-based joint beamforming and BS-RIS-UE association design for RIS-assisted mmWave networks[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 345–350. doi: 10.1109/WCNC51071.2022.9771607.
    [24] DONG Runze, WANG Buhong, TIAN Jiwei, et al. Deep reinforcement learning based UAV for securing mmWave communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5429–5434. doi: 10.1109/TVT.2022.3224959.
    [25] ZENG Yong, WU Qingqing, and ZHANG Rui. Accessing from the sky: A tutorial on UAV communications for 5G and beyond[J]. Proceedings of the IEEE, 2019, 107(12): 2327–2375. doi: 10.1109/JPROC.2019.2952892.
    [26] YOU Changsheng and ZHANG Rui. 3D trajectory optimization in Rician fading for UAV-enabled data harvesting[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3192–3207. doi: 10.1109/TWC.2019.2911939.
    [27] NASIR A A, DURRANI S, MEHRPOUYAN H, et al. Timing and carrier synchronization in wireless communication systems: A survey and classification of research in the last 5 years[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 180(2016): 1–38. doi: 10.1186/s13638-016-0670-9.
    [28] SKOLNIK M I. Introduction to Radar Systems[M]. New York: McGraw-Hill, 1980: 581.
    [29] LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735.
    [30] KAY S M. Fundamentals of Statistical Signal Processing[M]. Englewood Cliffs, NJ: PTR Prentice-Hall, 1993.
    [31] MONTAVON G, ORR G B, and MÜLLER K R. Neural Networks: Tricks of the Trade[M]. 2nd ed. Berlin: Springer, 2012: 769. doi: 10.1007/978-3-642-35289-8.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-04
  • 修回日期:  2025-06-30
  • 网络出版日期:  2025-07-09

目录

    /

    返回文章
    返回