基于空时解耦的机载双基SAR双通道杂波对消处理方法

李俊奥 李中余 杨青 武俊杰 杨建宇

李俊奥, 李中余, 杨青, 等. 基于空时解耦的机载双基SAR双通道杂波对消处理方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25024
引用本文: 李俊奥, 李中余, 杨青, 等. 基于空时解耦的机载双基SAR双通道杂波对消处理方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25024
LI Jun’ao, LI Zhongyu, YANG Qing, et al. Dual-channel clutter cancellation processing method via space-time decoupling for airborne BiSAR[J]. Journal of Radars, in press. doi: 10.12000/JR25024
Citation: LI Jun’ao, LI Zhongyu, YANG Qing, et al. Dual-channel clutter cancellation processing method via space-time decoupling for airborne BiSAR[J]. Journal of Radars, in press. doi: 10.12000/JR25024

基于空时解耦的机载双基SAR双通道杂波对消处理方法

DOI: 10.12000/JR25024 CSTR: 32380.14.JR25024
基金项目: 国家自然科学基金(62171084, 62431008)
详细信息
    作者简介:

    李俊奥,博士生,主要研究方向为双/多基合成孔径雷达成像与动目标指示技术等

    李中余,博士,教授,主要研究方向为新体制雷达成像技术、运动目标检测技术、智能信号处理技术等

    杨 青,博士,主要研究方向为双/多基合成孔径雷达舰船目标检测与成像技术等

    武俊杰,博士,教授,主要研究方向为前视SAR成像技术、双/多基合成孔径雷达、雷达信号处理等

    杨建宇,博士,教授,主要研究方向为新体制雷达探测与成像技术、信号检测与估计等

    通讯作者:

    李俊奥 lijunao@outlook.com

    李中余 zhongyu_li@uestc.edu.cn

  • 责任主编:孙光才 Corresponding Editor: SUN Guangcai
  • 中图分类号: TN951

Dual-channel Clutter Cancellation Processing Method Via Space-time Decoupling For Airborne BiSAR

Funds: The National Natural Science Foundation of China (62171084, 62431008)
More Information
  • 摘要: 杂波抑制是实现动目标指示的一项重要技术手段。然而,在机载双基合成孔径雷达(SAR)动目标指示中,受限于杂波的空时强耦合非线性和非平稳性,传统的空时自适应滤波、偏置相位中心方法不能获得期望的杂波抑制性能。为解决上述难题,该文提出了一种基于空时解耦的机载双基SAR双通道杂波对消处理方法。其核心在于建立空时解耦矩阵,将机载双基SAR强耦合非线性的空时谱解耦为空间频率保持一致的空时谱。所提方法主要分为以下3个步骤:(1)为提高目标信杂噪比,应用一阶Keystone变换和高阶距离徙动校正函数,使得目标信号能量集中在同一个距离单元;(2)为削弱双基平台运动造成的方位谱扩展效应,逐距离单元补偿多普勒调频率项;(3)为实现通道间杂波对消处理,引入空时解耦矩阵,在保持机载双基SAR同一距离单元内各杂波点归一化多普勒频率不变的情况下,将对应的空间频率均衡到零频,再利用通道间回波对消处理,实现杂波的有效抑制。通过仿真和实测数据处理,证明了所提方法进行机载双基SAR杂波抑制的有效性。

     

  • 图  1  机载双基SAR双通道几何构型

    Figure  1.  The geometry configuration of dual-channel airborne BiSAR

    图  2  不同分布对机载双基SAR地海杂波幅度的拟合结果

    Figure  2.  Fitting results of different distributions for the ground/sea clutter amplitude of airborne BiSAR

    图  3  机载双基SAR双通道杂波空时信号建模流程图

    Figure  3.  The clutter space-time signal modeling flowchart for dual-channel airborne BiSAR

    图  4  机载双基SAR等效相位中心空时变特性分析

    Figure  4.  Analysis of space-time varying characteristic of equivalent phase center for airborne BiSAR

    图  5  方位多普勒谱压缩前后空时分布曲线

    Figure  5.  The space-time distribution curve before and after azimuth Doppler spectrum compression

    图  6  空时解耦前后机载双基SAR空时分布曲线

    Figure  6.  The airborne BiSAR space-time distribution curve before and after decoupling

    图  7  机载双基SAR双通道杂波对消处理流程

    Figure  7.  The clutter cancellation processing flow for dual-channel airborne BiSAR

    图  8  距离脉压后地面回波以及距离-多普勒谱

    Figure  8.  The ground echo after range compression and range-Doppler spectrum

    图  9  距离徙动校正后的地面回波以及多普勒谱压缩后的距离-多普勒谱

    Figure  9.  The ground echo after range cell migration correction and range-Doppler spectrum after azimuth spectrum compression

    图  10  地杂波空时解耦前后的空时谱

    Figure  10.  Space-time spectrum before and after decoupling of ground clutter

    图  11  经过不同方法进行地杂波抑制前后的成像结果

    Figure  11.  Imaging results before and after ground clutter suppression with different methods

    图  12  经过不同方法进行地面杂波抑制后动目标成像位置处剖面

    Figure  12.  Moving target imaging profile after ground clutter suppression using different methods

    图  13  不同SCNR下经过3种方法进行地杂波抑制后的动目标检测概率

    Figure  13.  Detection probability after ground clutter suppression using three methods at different SCNRs

    图  14  经过距离徙动校正和多普勒谱压缩后海面回波的距离-多普勒谱

    Figure  14.  Range-Doppler spectrum of sea echo after range cell migration correction and azimuth spectrum compression

    图  15  海杂波空时解耦前后的空时谱

    Figure  15.  Space-time spectrum before and after decoupling of sea clutter

    图  16  经过不同方法进行海杂波抑制前后的成像结果

    Figure  16.  Imaging results before and after sea clutter suppression with different methods

    图  17  经过不同方法进行海面杂波抑制后动目标成像位置处剖面

    Figure  17.  Moving target imaging profile after sea clutter suppression using different methods

    图  18  不同SCNR下经过3种方法进行海杂波抑制后的动目标检测概率

    Figure  18.  Detection probability after sea clutter suppression using three methods at different SCNRs

    图  19  机载双基SAR飞行试验构型

    Figure  19.  The flight experiment configuration of airborne BiSAR

    图  20  机载双基SAR飞行试验回波以及距离-多普勒谱

    Figure  20.  The ground echo of airborne BiSAR experiment and range-Doppler spectrum

    图  21  距离徙动校正后的机载双基SAR飞行试验回波以及多普勒谱压缩后的距离-多普勒谱

    Figure  21.  The ground echo of airborne BiSAR experiment after range cell migration correction and range-Doppler spectrum after azimuth spectrum compression

    图  22  经过不同方法进行实测数据回波抑制前后的成像结果

    Figure  22.  Imaging results before and after real data suppression with different methods

    图  23  3个动目标成像位置处剖面结果

    Figure  23.  Imaging profiles of three moving targets

    表  1  BiSAR系统参数

    Table  1.   The system parameters of BiSAR

    参数 符号 数值
    发射站位置 $ T $ (–8000, –1000, 6000) m
    接收站位置 $ \boldsymbol{R} $ (0, –8000, 6000) m
    发射站速度 $ \boldsymbol{V}_{\mathrm{T}} $ (–50, 150, 0) m/s
    接收站速度 $ \boldsymbol{V}_{\mathrm{R}} $ (0, 200, 0) m/s
    载频 $ f_{{\mathrm{c}}} $ 10 GHz
    带宽 $ B_{\mathrm{r}} $ 200 MHz
    合成孔径时间 $ T_{{\mathrm{s}}} $ 1 s
    脉冲重复频率 $ \text { PRF } $ 1200 Hz
    通道数量 $ N $ 2
    脉冲数量 $ M $ 10
    下载: 导出CSV
  • [1] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.

    YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.
    [2] 胡克彬. SAR高精度成像方法研究[D]. [博士论文], 电子科技大学, 2017.

    HU Kebin. Research on high-precision imaging methods for synthetic aperture radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
    [3] 张强辉. 高速机动平台双基前视SAR成像方法研究[D]. [博士论文], 电子科技大学, 2019. doi: 10.27005/d.cnki.gdzku.2019.000037.

    ZHANG Qianghui. Imaging method research for bistatic forward-looking SAR mounted on high-speed maneuvering platform[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2019. doi: 10.27005/d.cnki.gdzku.2019.000037.
    [4] 李中余. 双基地合成孔径雷达动目标检测与成像技术研究[D]. [博士论文], 电子科技大学, 2017.

    LI Zhongyu. Research on bistatic SAR moving target detection and imaging technology[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
    [5] XIONG Tao, LI Yachao, LI Qi, et al. Using an equivalence-based approach to derive 2-D spectrum of BiSAR data and implementation into an RDA processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4765–4774. doi: 10.1109/TGRS.2020.3011420.
    [6] ZHAO Ye, ZHANG Ming, ZHAO Yanwei, et al. A bistatic SAR image intensity model for the composite ship-ocean scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4250–4258. doi: 10.1109/TGRS.2015.2393915.
    [7] LI Zhongyu, WU Junjie, YANG Jianyu, et al. Bistatic SAR Clutter Suppression: Theory, Method, and Experiment[M]. Singapore: Springer, 2022, 1-137. doi: 10.1007/978-981-19-0159-1.
    [8] LI Junao, LI Zhongyu, YANG Qing, et al. Joint clutter suppression and moving target indication in 2-D azimuth rotated time domain for single-channel bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202516. doi: 10.1109/TGRS.2023.3237553.
    [9] NOHARA T J, WEBER P, PREMJI A, et al. Airborne ground moving target indication using non-side-looking antennas[C]. 1998 IEEE Radar Conference, RADARCON’98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197), Dallas, USA, 1998: 269–274. doi: 10.1109/NRC.1998.678013.
    [10] KLEMM R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1987, 134(3): 269–276. doi: 10.1049/ip-f-1.1987.0054.
    [11] YANG Zhaocheng, LI Xiang, WANG Hongqiang, et al. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1214–1218. doi: 10.1109/LGRS.2012.2236639.
    [12] KAN Qingyun, XU Jingwei, LIAO Guisheng, et al. Clutter characteristics analysis and range-dependence compensation for space-air bistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5101615. doi: 10.1109/TGRS.2023.3347547.
    [13] 李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J/OL]. 雷达学报, 1–19. https://radars.ac.cn/cn/article/doi/10.12000/JR24032, 2024.

    LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptive ANM-ADMM-Net for bistatic SAR[J/OL]. Journal of Radars, 1–19. https://radars.ac.cn/cn/article/doi/10.12000/JR24032, 2024.
    [14] LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043.
    [15] 穆慧琳. 多通道SAR地面运动目标检测与成像研究[D]. [博士论文], 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.000177.

    MU Huilin. Research on ground moving target detection and imaging in multichannel SAR system[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.000177.
    [16] 张文鹏. 复杂条件下多通道SAR运动目标检测与参数估计方法研究[D]. [博士论文], 国防科技大学, 2018. doi: 10.27052/d.cnki.gzjgu.2018.000417.

    ZHANG Wenpeng. Research of moving target detection and parameter estimation methods for multichannel SAR in complicated conditions[D]. [Ph.D. dissertation], National University of Defense Technology, 2018. doi: 10.27052/d.cnki.gzjgu.2018.000417.
    [17] YANG Taoli, LI Zhenfang, SUO Zhiyong, et al. Performance analysis for multichannel HRWS SAR systems based on STAP approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1409–1413. doi: 10.1109/LGRS.2013.2258889.
    [18] GUERCI J R, GOLDSTEIN J S, REED I S. Optimal and adaptive reduced-rank STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 647–663. doi: 10.1109/7.845255.
    [19] CHEN Xiaolong, GUAN Jian, BAO Zhonghua, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. doi: 10.1109/TGRS.2013.2246574.
    [20] CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260.
    [21] HOU Yingjie, WANG Junfeng, LIU Xingzhao, et al. An automatic SAR-GMTI algorithm based on DPCA[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 592–595. doi: 10.1109/IGARSS.2014.6946492.
    [22] XU Jia, HUANG Zuzhen, YAN Liang, et al. SAR ground moving target indication based on relative residue of DPCA processing[J]. Sensors, 2016, 16(10): 1676. doi: 10.3390/s16101676.
    [23] LI Zhongyu, LI Shanchuan, LIU Zhutian, et al. Bistatic forward-looking SAR MP-DPCA method for space-time extension clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6565–6579. doi: 10.1109/TGRS.2020.2977982.
    [24] WARD J. Space-time adaptive processing for airborne radar[C]. IEE Colloquium on Space-Time Adaptive Processing (Ref. No.1998/241), London, UK, 1998: 2/1–2/6. doi: 10.1049/ic:19980240.
    [25] HUANG Penghui, YANG Hao, XIA Xianggen, et al. A novel sea clutter rejection algorithm for spaceborne multichannel radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117422. doi: 10.1109/TGRS.2022.3204324.
    [26] HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. Multichannel sea clutter modeling for spaceborne early warning radar and clutter suppression performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8349–8366. doi: 10.1109/TGRS.2020.3039495.
    [27] HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. A novel dimension-reduced space-time adaptive processing algorithm for spaceborne multichannel surveillance radar systems based on spatial-temporal 2-D sliding window[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109721. doi: 10.1109/TGRS.2022.3144668.
    [28] LV Mingjie and ZHOU Chen. Study on sea clutter suppression methods based on a realistic radar dataset[J]. Remote Sensing, 2019, 11(23): 2721. doi: 10.3390/rs11232721.
    [29] ZHANG Tianfu, DENG Yunkai, and WANG Yongliang. A novel joint dimensionality-reduced adaptive clutter suppression method for space-based early warning radar utilizing frequency diversity array[J]. IEEE Transactions on Radar Systems, 2024, 2: 1123–1134. doi: 10.1109/TRS.2024.3483772.
    [30] WANG Yumiao, ZHAO Wenjing, WANG Xiang, et al. Nonhomogeneous sea clutter suppression using complex-valued U-Net model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4027705. doi: 10.1109/LGRS.2022.3214633.
    [31] JI Yuanzheng, LIU Aijun, SONG Zhen, et al. HFSWR clutter suppression and target detection method based on RRN and exponential weight control[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3507305. doi: 10.1109/LGRS.2024.3417486.
    [32] HUA Qinglong, YUN Zhang, MU Huilin, et al. An approach of sea clutter suppression for SAR images by self-supervised complex-valued deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4512505. doi: 10.1109/LGRS.2022.3183582.
    [33] 邓云凯, 王宇. 先进双基SAR技术研究[J]. 雷达学报, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.

    DENG Yunkai and WANG Yu. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026.
    [34] 陈士超, 邢孟道, 张双喜, 等. 一种串行双基SAR的SIFT成像算法[J]. 雷达学报, 2013, 2(1): 14–22. doi: 10.3724/SP.J.1300.2012.13018.

    CHEN Shichao, XING Mengdao, ZHANG Shuangxi, et al. A SIFT algorithm for bistatic SAR imaging in spaceborne constant-offset configuration[J]. Journal of Radars, 2013, 2(1): 14–22. doi: 10.3724/SP.J.1300.2012.13018.
    [35] 刘裕洲, 蔡天倚, 李亚超, 等. 联合距离方位二维NCS的星弹双基前视SAR成像算法[J]. 雷达学报, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.

    LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
    [36] 武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.

    WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
    [37] LI Zhongyu, WU Junjie, YI Qingying, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000–1016. doi: 10.1109/TAES.2014.130539.
    [38] LIU Zhutian, YE Hongda, LI Zhongyu, et al. Optimally matched space-time filtering technique for BFSAR nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210617. doi: 10.1109/TGRS.2021.3090462.
    [39] LI Junao, LI Zhongyu, YANG Qing, et al. Efficient matrix sparse recovery STAP method based on Kronecker transform for BiSAR sea clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103218. doi: 10.1109/TGRS.2024.3362844.
    [40] ZHU Daiyin, LI Yong, and ZHU Zhaoda. A keystone transform without interpolation for sar ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147.
    [41] WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840.
    [42] WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599.
    [43] SCHöNEMANN P H. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1): 1–10. doi: 10.1007/BF02289451.
    [44] SKOLNIK M I. Radar Handbook[M]. New York: McGraw, 1970, 262-304.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-25
  • 修回日期:  2025-04-28

目录

    /

    返回文章
    返回