面向宽带-近场通感一体化的部分连接混合预编码设计

王向荣 于硕同 翟唯童 徐晋 丁文锐

王向荣, 于硕同, 翟唯童, 等. 面向宽带-近场通感一体化的部分连接混合预编码设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25023
引用本文: 王向荣, 于硕同, 翟唯童, 等. 面向宽带-近场通感一体化的部分连接混合预编码设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25023
WANG Xiangrong, YU Shuotong, ZHAI Weitong, et al. Partially connected hybrid precoder design for wideband near-field integrated sensing and communications[J]. Journal of Radars, in press. doi: 10.12000/JR25023
Citation: WANG Xiangrong, YU Shuotong, ZHAI Weitong, et al. Partially connected hybrid precoder design for wideband near-field integrated sensing and communications[J]. Journal of Radars, in press. doi: 10.12000/JR25023

面向宽带-近场通感一体化的部分连接混合预编码设计

DOI: 10.12000/JR25023 CSTR: 32380.14.JR25023
基金项目: 国家自然科学基金(U2333212, 61827901),北京市科技新星(2022484107, 20240484539),北京市自然科学基金(L244045)
详细信息
    作者简介:

    王向荣,博士,教授,博士生导师,主要研究方向为阵列信号处理、雷达信号处理、频谱共享、雷达波形设计

    于硕同,博士生,主要研究方向为阵列信号处理

    翟唯童,博士生,主要研究方向为稀疏阵列波束形成、凸优化、通感一体化

    徐 晋,高级工程师,主要研究方向为雷达系统设计与分析、雷达信号处理

    丁文锐,博士,教授,博士生导师,主要研究方向为无人机指挥与控制、图像处理、模式识别

    通讯作者:

    王向荣 xrwang@buaa.edu.cn

    徐晋 xujinwq@sohu.com

  • 责任主编:刘升恒 Corresponding Editor: LIU Shengheng
  • 中图分类号: TN95

Partially Connected Hybrid Precoder Design for Wideband Near-field Integrated Sensing and Communications

Funds: The National Natural Science Foundation of China (U2333212, 61827901), Beijing Nova Program (2022484107, 20240484539), Beijing Natural Science Foundation (L244045)
More Information
  • 摘要: 大规模阵列与高频宽带信号支持的通感一体化(ISAC)技术在提升频谱效率的同时增强环境感知能力。在此背景下,窄带-远场的ISAC模型将出现不可避免的系统偏差,ISAC建模需要同时考虑宽带和近场效应。该文针对宽带-近场条件下基于部分连接混合预编码的ISAC系统进行优化设计和性能评估,考虑集中式多输入多输出(MIMO)的单基地模式和双基地模式两种感知情形。对于单基地模式,重新推导波达方向(DOA)和距离联合估计的克拉美罗下界(CRLB),并以此为感知性能优化标准;对于双基地模式,在保证每一个用户通信质量(QoS)的前提下,最大化聚焦在感知目标上的发射功率。为了解决上述高维度非凸优化问题,该文提出直接交替最小化(AM)和间接全数字逼近两种算法,将该问题分解为若干独立的子问题,每个子问题可被凸松弛和有效解决。数值仿真实验结果表明,经过合理设置预设通信信噪比(SNR)阈值和发射天线分组,所设计的宽带-近场ISAC系统可以同时取得与基于全数字预编码的ISAC系统接近的感知性能和通信性能。

     

  • 图  1  宽带-近场ISAC系统示意图

    Figure  1.  Schematic diagram of wideband near-field ISAC system

    图  2  宽带-近场通信示意图

    Figure  2.  Schematic diagrams of wideband near-field communication

    图  3  部分连接混合预编码器示意图

    Figure  3.  Schematic diagram of partially-connected hybrid precoder

    图  4  集中式MIMO的两种工作模式

    Figure  4.  Two working modes of co-located MIMO

    图  5  单基地模式ISAC设计的全数字逼近算法的收敛曲线

    Figure  5.  The convergence curves of fully digital approximation algorithm for monostatic ISAC design

    图  6  角度和距离估计MSE与预设$ {\gamma }_{0} $的关系

    Figure  6.  MSE for angle and distance estimation versus $ {\gamma }_{0} $

    图  7  BS发射阵列的波束方向图($ {\gamma }_{0}=15\;{\mathrm{dB}} $)

    Figure  7.  Transmit Beampattern of the BS array ($ {\gamma }_{0}=15\;{\mathrm{dB }}$)

    图  8  输出SNR与预设$ {\gamma }_{0} $的关系

    Figure  8.  Output SNR versus $ {\gamma }_{0} $

    图  9  双基地模式ISAC设计的AM算法的收敛曲线

    Figure  9.  The convergence curves of alternative minimization algorithm for bistatic ISAC design

    图  10  聚焦在目标上的发射功率与预设$ {\gamma }_{0} $的关系

    Figure  10.  Power irradiated on each target versus $ {\gamma }_{0} $

    图  11  聚焦在目标上的发射功率与感知目标相对位置的关系

    Figure  11.  Power irradiated on each target versus relative positions of multi-targets

    图  12  聚焦在目标上的发射功率与通信用户相对位置的关系

    Figure  12.  Power irradiated on each target versus relative positions of multi-users

    图  13  BS发射阵列的波束方向图($ {\gamma }_{0}=16\;\mathrm{d}\mathrm{B} $)

    Figure  13.  Transmit beampattern of the BS array ($ {\gamma }_{0}=16\;\mathrm{d}\mathrm{B} $)

    图  14  BS发射阵列的波束方向图($ {\gamma }_{0}=17\;\mathrm{d}\mathrm{B} $)

    Figure  14.  Transmit beampattern of the BS array ($ {\gamma }_{0}=17\;\mathrm{d}\mathrm{B} $)

    图  15  BS发射阵列的波束方向图($ {\gamma }_{0}=18\;\mathrm{d}\mathrm{B} $)

    Figure  15.  Transmit beampattern of the BS array ($ {\gamma }_{0}=18\;\mathrm{d}\mathrm{B} $)

    1  单基地MIMO ISAC设计的全数字逼近算法

    1.   Fully digital approximation algorithm for monostatic MIMO ISAC design

     步骤1:输入$ {\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}(1\le q\le Q) $,随机化$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(0\right)} $
     步骤2:for $ l=0, 1, 2, \cdots $,执行(AM算法框架)
     步骤3:计算$ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}=\sqrt{\dfrac{{{N}_{\mathrm{R}\mathrm{F}}\hat{P}}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{q}}{N}}\dfrac{{\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{{\mathrm{H}}(l-1)}{\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}}{{\left\|{\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{{\mathrm{H}}(l-1)}{\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}\right\|}_{\rm F}} $
      (根据式(42))
     步骤4:计算$ {\left[{\tilde{\boldsymbol{f}}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)}\right]}_{\left(i\right)}={{\mathrm{e}}}^{{\mathrm{j}}\angle \left(\sum _{q=1}^{Q}{\left[{\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}\right]}_{\left(i\right)}{\left[{\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}\right]}_{\left(j\right)}^{\rm H}\right)} $
      (根据式(45))
     步骤5:end if 收敛
     步骤6:输出$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)} $, $ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}(1\le q\le Q) $
    下载: 导出CSV

    2  基于AM框架的双基地MIMO ISAC设计算法

    2.   AM-based algorithm for bistatic MIMO ISAC design

     步骤1:输入随机化$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(0\right)} $
     步骤2:for $ l=0, 1, 2, \cdots $,执行(外层循环)
     步骤3:  设置$ m=0,{\boldsymbol{F}}_{\mathrm{B}\mathrm{B},0}^{q\left(l\right)}={\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q(l-1)} $,执行(内层循环)
     步骤4:   $ m=m+1 $
     步骤5:   求解松弛后的式(47)得到$ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}\left(m\right)}^{q\left(l\right)} $
     步骤6:  end if 收敛(内层循环结束)
     步骤7:  else $ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B},0}^{q\left(l\right)}={\boldsymbol{F}}_{\mathrm{B}\mathrm{B}\left(m\right)}^{q\left(l\right)} $
        (利用SCA方法迭代求解子问题($ {\mathcal{P}}_{2-1} $))
     步骤8:  取$ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}={\boldsymbol{F}}_{\mathrm{B}\mathrm{B}\left(m\right)}^{q\left(l\right)} $,求解式(54)得到$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)} $
        (利用RSGD方法求解子问题($ {\mathcal{P}}_{2-2-2} $))
     步骤9: end if 收敛(外层循环结束)
     步骤10: 输出$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)} $, $ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}(1\le q\le Q) $
    下载: 导出CSV
  • [1] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120.
    [2] MA Lina, LU Jingyun, GU Changzhan, et al. A wideband dual-circularly polarized, simultaneous transmit and receive (STAR) antenna array for integrated sensing and communication in IoT[J]. IEEE Internet of Things Journal, 2023, 10(7): 6367–6376. doi: 10.1109/JIOT.2022.3225339.
    [3] XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509.
    [4] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [5] 曾勇, 董珍君, 王蕙质, 等. 面向6G通信感知一体化的固定与可移动天线技术[J]. 信号处理, 2024, 40(8): 1377–1407. doi: 10.16798/j.issn.1003-0530.2024.08.001.

    ZENG Yong, DONG Zhenjun, WANG Huizhi, et al. Fixed and movable antenna technology for 6G integrated sensing and communication[J]. Journal of Signal Processing, 2024, 40(8): 1377–1407. doi: 10.16798/j.issn.1003-0530.2024.08.001.
    [6] AHMED I, KHAMMARI H, SHAHID A, et al. A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3060–3097. doi: 10.1109/COMST.2018.2843719.
    [7] WILD T, BRAUN V, and VISWANATHAN H. Joint design of communication and sensing for beyond 5G and 6G systems[J]. IEEE Access, 2021, 9: 30845–30857. doi: 10.1109/ACCESS.2021.3059488.
    [8] GAO Zhen, WAN Ziwei, ZHENG Dezhi, et al. Integrated sensing and communication with mmWave massive MIMO: A compressed sampling perspective[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1745–1762. doi: 10.1109/TWC.2022.3206614.
    [9] CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366.
    [10] GAO Feifei, XU Liangyuan, and MA Shaodan. Integrated sensing and communications with joint beam-squint and beam-split for mmWave/THz massive MIMO[J]. IEEE Transactions on Communications, 2023, 71(5): 2963–2976. doi: 10.1109/TCOMM.2023.3252584.
    [11] AMADORI P V and MASOUROS C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection[J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2223. doi: 10.1109/TCOMM.2015.2431266.
    [12] ELBIR A M, MISHRA K V, VOROBYOV S A, et al. Twenty-five years of advances in beamforming: From convex and nonconvex optimization to learning techniques[J]. IEEE Signal Processing Magazine, 2023, 40(4): 118–131. doi: 10.1109/MSP.2023.3262366.
    [13] CHENG Ziyang, HE Zishu, and LIAO Bin. Hybrid beamforming design for OFDM dual-function radar-communication system[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1455–1467. doi: 10.1109/JSTSP.2021.3118276.
    [14] WANG Zhaolin, MU Xidong, and LIU Yuanwei. Near-field integrated sensing and communications[J]. IEEE Communications Letters, 2023, 27(8): 2048–2052. doi: 10.1109/LCOMM.2023.3280132.
    [15] LUAN Mingan, WANG Bo, ZHAO Yanping, et al. Phase design and near-field target localization for RIS-assisted regional localization system[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1766–1777. doi: 10.1109/TVT.2021.3135275.
    [16] JOHNSTON J, VENTURINO L, GROSSI E, et al. MIMO OFDM dual-function radar-communication under error rate and beampattern constraints[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1951–1964. doi: 10.1109/JSAC.2022.3156651.
    [17] WEI Zhiqing, YAO Rubing, YUAN Xin, et al. Precoding optimization for MIMO-OFDM integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 288–299. doi: 10.1109/TCCN.2024.3445376.
    [18] HASSANIEN A, AMIN M G, ABOUTANIOS E, et al. Dual-function radar communication systems: A solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 2019, 36(5): 115–126. doi: 10.1109/MSP.2019.2900571.
    [19] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Waveform design and accurate channel estimation for frequency-hopping MIMO radar-based communications[J]. IEEE Transactions on Communications, 2021, 69(2): 1244–1258. doi: 10.1109/TCOMM.2020.3034357.
    [20] JIANG Wangjun, WEI Zhiqing, LIU Fan, et al. Collaborative precoding design for adjacent integrated sensing and communication base stations[J]. IEEE Internet of Things Journal, 2024, 11(9): 15059–15074. doi: 10.1109/JIOT.2023.3328313.
    [21] XU Jing, WANG Xiangrong, ABOUTANIOS E, et al. Hybrid index modulation for dual-functional radar communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3186–3200. doi: 10.1109/TVT.2022.3219888.
    [22] WANG Xiangrong, ZHAI Weitong, WANG Xianghua, et al. Wideband near-field integrated sensing and communication with sparse transceiver design[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(4): 662–677. doi: 10.1109/JSTSP.2024.3394970.
    [23] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2022, 70(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215.
    [24] WANG Xiangrong, ZHAI Weitong, WANG Xianghua, et al. Wideband near-field integrated sensing and communications: A hybrid precoding perspective[J]. IEEE Signal Processing Magazine, 2025, 42(1): 88–105. doi: 10.1109/MSP.2024.3496396.
    [25] LI Zheda, HAN Shengqian, SANGODOYIN S, et al. Joint optimization of hybrid beamforming for multi-user massive MIMO downlink[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3600–3614. doi: 10.1109/TWC.2018.2808523.
    [26] QI Chenhao, CI Wei, ZHANG Jinming, et al. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications[J]. IEEE Communications Letters, 2022, 26(5): 1136–1140. doi: 10.1109/LCOMM.2022.3157751.
    [27] WANG Xiangrong, AMIN M, and CAO Xianbin. Analysis and design of optimum sparse array configurations for adaptive beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 340–351. doi: 10.1109/TSP.2017.2760279.
    [28] HU Yunbo, QIAN Hua, KANG Kai, et al. Joint precoding design for sub-connected hybrid beamforming system[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1199–1212. doi: 10.1109/TWC.2023.3287229.
    [29] NGUYEN N T, SHLEZINGER N, ELDAR Y C, et al. Multiuser MIMO wideband joint communications and sensing system with subcarrier allocation[J]. IEEE Transactions on Signal Processing, 2023, 71: 2997–3013. doi: 10.1109/TSP.2023.3302622.
    [30] YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/JSTSP.2016.2523903.
    [31] WANG Xianghua, TAN C P, WANG Youqing, et al. Defending UAV networks against covert attacks using auxiliary signal injections[J]. IEEE Transactions on Automation Science and Engineering, 2025, 22: 8805–8817. doi: 10.1109/TASE.2024.3489609.
    [32] ZHAO Boqun, OUYANG Chongjun, LIU Yuanwei, et al. Modeling and analysis of near-field ISAC[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(4): 678–693. doi: 10.1109/JSTSP.2024.3386054.
    [33] 王晶阳, 田卫明, 卢晓军, 等. 地基双基地MIMO成像雷达空间分辨特性分析[J]. 信号处理, 2018, 34(11): 1286–1296. doi: 10.16798/j.issn.1003-0530.2018.11.003.

    WANG Jingyang, TIAN Weiming, LU Xiaojun, et al. Analysis on spatial resolutions of ground-based bistatic MIMO imaging radar[J]. Journal of Signal Processing, 2018, 34(11): 1286–1296. doi: 10.16798/j.issn.1003-0530.2018.11.003.
    [34] 何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128.

    HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128.
    [35] WANG Xianghua and TAN C P. Output feedback active fault tolerant control for a 3-DOF laboratory helicopter with sensor fault[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 2689–2700. doi: 10.1109/TASE.2023.3267132.
    [36] ZHAI Weitong, WANG Xiangrong, CAO Xianbin, et al. Reinforcement learning based dual-functional massive MIMO systems for multi-target detection and communications[J]. IEEE Transactions on Signal Processing, 2023, 71: 741–755. doi: 10.1109/TSP.2023.3252885.
    [37] TSENG P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[J]. SIAM Journal on Control and Optimization, 1991, 29(1): 119–138. doi: 10.1137/0329006.
    [38] ZHAI Weitong, WANG Xiangrong, LI Kunyan, et al. Partially-connected hybrid precoder design for ISAC via joint grouping and precoding[C]. 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024: 1–6. doi: 10.1109/ICSIDP62679.2024.10868077.
    [39] LI Yihan, GONG Shiqi, LIU Heng, et al. Near-field beamforming optimization for holographic XL-MIMO multiuser systems[J]. IEEE Transactions on Communications, 2024, 72(4): 2309–2323. doi: 10.1109/TCOMM.2023.3338737.
    [40] WANG Xiangrong, HUANG Jiayi, WANG Xianghua, et al. Optimal sparse array design for airborne weather radar with integrated communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 4238–4254. doi: 10.1109/TAES.2024.3499892.
    [41] FRIEDLANDER B. Localization of signals in the near-field of an antenna array[J]. IEEE Transactions on Signal Processing, 2019, 67(15): 3885–3893. doi: 10.1109/TSP.2019.2923164.
    [42] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Tri-polarized holographic MIMO surfaces for near-field communications: Channel modeling and precoding design[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8828–8842. doi: 10.1109/TWC.2023.3266298.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-25
  • 修回日期:  2025-05-11

目录

    /

    返回文章
    返回