Partially Connected Hybrid Precoder Design for Wideband Near-field Integrated Sensing and Communications
-
摘要: 大规模阵列与高频宽带信号支持的通感一体化(ISAC)技术在提升频谱效率的同时增强环境感知能力。在此背景下,窄带-远场的ISAC模型将出现不可避免的系统偏差,ISAC建模需要同时考虑宽带和近场效应。该文针对宽带-近场条件下基于部分连接混合预编码的ISAC系统进行优化设计和性能评估,考虑集中式多输入多输出(MIMO)的单基地模式和双基地模式两种感知情形。对于单基地模式,重新推导波达方向(DOA)和距离联合估计的克拉美罗下界(CRLB),并以此为感知性能优化标准;对于双基地模式,在保证每一个用户通信质量(QoS)的前提下,最大化聚焦在感知目标上的发射功率。为了解决上述高维度非凸优化问题,该文提出直接交替最小化(AM)和间接全数字逼近两种算法,将该问题分解为若干独立的子问题,每个子问题可被凸松弛和有效解决。数值仿真实验结果表明,经过合理设置预设通信信噪比(SNR)阈值和发射天线分组,所设计的宽带-近场ISAC系统可以同时取得与基于全数字预编码的ISAC系统接近的感知性能和通信性能。Abstract: Aiming to enhance sensing resolution and improve spectral efficiency, future Integrated Sensing And Communications (ISAC) systems are expected to incorporate extremely large-scale (XL) arrays and large bandwidths centered around high carrier frequencies. This design necessitates considering wideband and near-field effects. In this paper, the design of partially connected hybrid precoders for ISAC is refined and evaluated, focusing on the wideband near-field scenario and addressing monostatic and bistatic co-located Multiple-Input-Multiple-Output (MIMO). For monostatic MIMO, the Cramer-Rao Bound (CRB) for joint Direction-of-Arrival (DoA) and distance estimations of sensing wideband sources is rederived, serving as a performance metric for sensing. For bistatic MIMO, power irradiated at near-field targets is maximized while ensuring that the communication Quality of Service (QoS) for each user is maintained. To address the above nonconvex, high-dimensional problems, a direct alternative minimization, along with an indirect fully digital approximation, is proposed. This method decomposes the original problems into distinct subproblems, enabling effective solutions for each subproblem. Simulation results demonstrate that the proposed wideband near-field ISAC framework can achieve sensing and communication performance close to that of fully digital precoders, given an appropriate communication Signal-to-Noise Ratio (SNR) setting and transmit antenna grouping.
-
1 单基地MIMO ISAC设计的全数字逼近算法
1. Fully digital approximation algorithm for monostatic MIMO ISAC design
步骤1:输入$ {\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}(1\le q\le Q) $,随机化$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(0\right)} $ 步骤2:for $ l=0, 1, 2, \cdots $,执行(AM算法框架) 步骤3:计算$ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}=\sqrt{\dfrac{{{N}_{\mathrm{R}\mathrm{F}}\hat{P}}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{q}}{N}}\dfrac{{\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{{\mathrm{H}}(l-1)}{\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}}{{\left\|{\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{{\mathrm{H}}(l-1)}{\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}\right\|}_{\rm F}} $ (根据式(42)) 步骤4:计算$ {\left[{\tilde{\boldsymbol{f}}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)}\right]}_{\left(i\right)}={{\mathrm{e}}}^{{\mathrm{j}}\angle \left(\sum _{q=1}^{Q}{\left[{\boldsymbol{W}}_{\mathrm{o}\mathrm{p}\mathrm{t}}^{q}\right]}_{\left(i\right)}{\left[{\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}\right]}_{\left(j\right)}^{\rm H}\right)} $ (根据式(45)) 步骤5:end if 收敛 步骤6:输出$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)} $, $ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}(1\le q\le Q) $ 2 基于AM框架的双基地MIMO ISAC设计算法
2. AM-based algorithm for bistatic MIMO ISAC design
步骤1:输入随机化$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(0\right)} $ 步骤2:for $ l=0, 1, 2, \cdots $,执行(外层循环) 步骤3: 设置$ m=0,{\boldsymbol{F}}_{\mathrm{B}\mathrm{B},0}^{q\left(l\right)}={\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q(l-1)} $,执行(内层循环) 步骤4: $ m=m+1 $ 步骤5: 求解松弛后的式(47)得到$ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}\left(m\right)}^{q\left(l\right)} $ 步骤6: end if 收敛(内层循环结束) 步骤7: else $ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B},0}^{q\left(l\right)}={\boldsymbol{F}}_{\mathrm{B}\mathrm{B}\left(m\right)}^{q\left(l\right)} $ (利用SCA方法迭代求解子问题($ {\mathcal{P}}_{2-1} $)) 步骤8: 取$ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}={\boldsymbol{F}}_{\mathrm{B}\mathrm{B}\left(m\right)}^{q\left(l\right)} $,求解式(54)得到$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)} $ (利用RSGD方法求解子问题($ {\mathcal{P}}_{2-2-2} $)) 步骤9: end if 收敛(外层循环结束) 步骤10: 输出$ {\boldsymbol{F}}_{\mathrm{R}\mathrm{F}}^{\left(l\right)} $, $ {\boldsymbol{F}}_{\mathrm{B}\mathrm{B}}^{q\left(l\right)}(1\le q\le Q) $ -
[1] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120. [2] MA Lina, LU Jingyun, GU Changzhan, et al. A wideband dual-circularly polarized, simultaneous transmit and receive (STAR) antenna array for integrated sensing and communication in IoT[J]. IEEE Internet of Things Journal, 2023, 10(7): 6367–6376. doi: 10.1109/JIOT.2022.3225339. [3] XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509. [4] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632. [5] 曾勇, 董珍君, 王蕙质, 等. 面向6G通信感知一体化的固定与可移动天线技术[J]. 信号处理, 2024, 40(8): 1377–1407. doi: 10.16798/j.issn.1003-0530.2024.08.001.ZENG Yong, DONG Zhenjun, WANG Huizhi, et al. Fixed and movable antenna technology for 6G integrated sensing and communication[J]. Journal of Signal Processing, 2024, 40(8): 1377–1407. doi: 10.16798/j.issn.1003-0530.2024.08.001. [6] AHMED I, KHAMMARI H, SHAHID A, et al. A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3060–3097. doi: 10.1109/COMST.2018.2843719. [7] WILD T, BRAUN V, and VISWANATHAN H. Joint design of communication and sensing for beyond 5G and 6G systems[J]. IEEE Access, 2021, 9: 30845–30857. doi: 10.1109/ACCESS.2021.3059488. [8] GAO Zhen, WAN Ziwei, ZHENG Dezhi, et al. Integrated sensing and communication with mmWave massive MIMO: A compressed sampling perspective[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1745–1762. doi: 10.1109/TWC.2022.3206614. [9] CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366. [10] GAO Feifei, XU Liangyuan, and MA Shaodan. Integrated sensing and communications with joint beam-squint and beam-split for mmWave/THz massive MIMO[J]. IEEE Transactions on Communications, 2023, 71(5): 2963–2976. doi: 10.1109/TCOMM.2023.3252584. [11] AMADORI P V and MASOUROS C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection[J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2223. doi: 10.1109/TCOMM.2015.2431266. [12] ELBIR A M, MISHRA K V, VOROBYOV S A, et al. Twenty-five years of advances in beamforming: From convex and nonconvex optimization to learning techniques[J]. IEEE Signal Processing Magazine, 2023, 40(4): 118–131. doi: 10.1109/MSP.2023.3262366. [13] CHENG Ziyang, HE Zishu, and LIAO Bin. Hybrid beamforming design for OFDM dual-function radar-communication system[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1455–1467. doi: 10.1109/JSTSP.2021.3118276. [14] WANG Zhaolin, MU Xidong, and LIU Yuanwei. Near-field integrated sensing and communications[J]. IEEE Communications Letters, 2023, 27(8): 2048–2052. doi: 10.1109/LCOMM.2023.3280132. [15] LUAN Mingan, WANG Bo, ZHAO Yanping, et al. Phase design and near-field target localization for RIS-assisted regional localization system[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1766–1777. doi: 10.1109/TVT.2021.3135275. [16] JOHNSTON J, VENTURINO L, GROSSI E, et al. MIMO OFDM dual-function radar-communication under error rate and beampattern constraints[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1951–1964. doi: 10.1109/JSAC.2022.3156651. [17] WEI Zhiqing, YAO Rubing, YUAN Xin, et al. Precoding optimization for MIMO-OFDM integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 288–299. doi: 10.1109/TCCN.2024.3445376. [18] HASSANIEN A, AMIN M G, ABOUTANIOS E, et al. Dual-function radar communication systems: A solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 2019, 36(5): 115–126. doi: 10.1109/MSP.2019.2900571. [19] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Waveform design and accurate channel estimation for frequency-hopping MIMO radar-based communications[J]. IEEE Transactions on Communications, 2021, 69(2): 1244–1258. doi: 10.1109/TCOMM.2020.3034357. [20] JIANG Wangjun, WEI Zhiqing, LIU Fan, et al. Collaborative precoding design for adjacent integrated sensing and communication base stations[J]. IEEE Internet of Things Journal, 2024, 11(9): 15059–15074. doi: 10.1109/JIOT.2023.3328313. [21] XU Jing, WANG Xiangrong, ABOUTANIOS E, et al. Hybrid index modulation for dual-functional radar communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3186–3200. doi: 10.1109/TVT.2022.3219888. [22] WANG Xiangrong, ZHAI Weitong, WANG Xianghua, et al. Wideband near-field integrated sensing and communication with sparse transceiver design[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(4): 662–677. doi: 10.1109/JSTSP.2024.3394970. [23] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2022, 70(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215. [24] WANG Xiangrong, ZHAI Weitong, WANG Xianghua, et al. Wideband near-field integrated sensing and communications: A hybrid precoding perspective[J]. IEEE Signal Processing Magazine, 2025, 42(1): 88–105. doi: 10.1109/MSP.2024.3496396. [25] LI Zheda, HAN Shengqian, SANGODOYIN S, et al. Joint optimization of hybrid beamforming for multi-user massive MIMO downlink[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3600–3614. doi: 10.1109/TWC.2018.2808523. [26] QI Chenhao, CI Wei, ZHANG Jinming, et al. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications[J]. IEEE Communications Letters, 2022, 26(5): 1136–1140. doi: 10.1109/LCOMM.2022.3157751. [27] WANG Xiangrong, AMIN M, and CAO Xianbin. Analysis and design of optimum sparse array configurations for adaptive beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 340–351. doi: 10.1109/TSP.2017.2760279. [28] HU Yunbo, QIAN Hua, KANG Kai, et al. Joint precoding design for sub-connected hybrid beamforming system[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1199–1212. doi: 10.1109/TWC.2023.3287229. [29] NGUYEN N T, SHLEZINGER N, ELDAR Y C, et al. Multiuser MIMO wideband joint communications and sensing system with subcarrier allocation[J]. IEEE Transactions on Signal Processing, 2023, 71: 2997–3013. doi: 10.1109/TSP.2023.3302622. [30] YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/JSTSP.2016.2523903. [31] WANG Xianghua, TAN C P, WANG Youqing, et al. Defending UAV networks against covert attacks using auxiliary signal injections[J]. IEEE Transactions on Automation Science and Engineering, 2025, 22: 8805–8817. doi: 10.1109/TASE.2024.3489609. [32] ZHAO Boqun, OUYANG Chongjun, LIU Yuanwei, et al. Modeling and analysis of near-field ISAC[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(4): 678–693. doi: 10.1109/JSTSP.2024.3386054. [33] 王晶阳, 田卫明, 卢晓军, 等. 地基双基地MIMO成像雷达空间分辨特性分析[J]. 信号处理, 2018, 34(11): 1286–1296. doi: 10.16798/j.issn.1003-0530.2018.11.003.WANG Jingyang, TIAN Weiming, LU Xiaojun, et al. Analysis on spatial resolutions of ground-based bistatic MIMO imaging radar[J]. Journal of Signal Processing, 2018, 34(11): 1286–1296. doi: 10.16798/j.issn.1003-0530.2018.11.003. [34] 何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128.HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128. [35] WANG Xianghua and TAN C P. Output feedback active fault tolerant control for a 3-DOF laboratory helicopter with sensor fault[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 2689–2700. doi: 10.1109/TASE.2023.3267132. [36] ZHAI Weitong, WANG Xiangrong, CAO Xianbin, et al. Reinforcement learning based dual-functional massive MIMO systems for multi-target detection and communications[J]. IEEE Transactions on Signal Processing, 2023, 71: 741–755. doi: 10.1109/TSP.2023.3252885. [37] TSENG P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[J]. SIAM Journal on Control and Optimization, 1991, 29(1): 119–138. doi: 10.1137/0329006. [38] ZHAI Weitong, WANG Xiangrong, LI Kunyan, et al. Partially-connected hybrid precoder design for ISAC via joint grouping and precoding[C]. 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024: 1–6. doi: 10.1109/ICSIDP62679.2024.10868077. [39] LI Yihan, GONG Shiqi, LIU Heng, et al. Near-field beamforming optimization for holographic XL-MIMO multiuser systems[J]. IEEE Transactions on Communications, 2024, 72(4): 2309–2323. doi: 10.1109/TCOMM.2023.3338737. [40] WANG Xiangrong, HUANG Jiayi, WANG Xianghua, et al. Optimal sparse array design for airborne weather radar with integrated communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 4238–4254. doi: 10.1109/TAES.2024.3499892. [41] FRIEDLANDER B. Localization of signals in the near-field of an antenna array[J]. IEEE Transactions on Signal Processing, 2019, 67(15): 3885–3893. doi: 10.1109/TSP.2019.2923164. [42] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Tri-polarized holographic MIMO surfaces for near-field communications: Channel modeling and precoding design[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8828–8842. doi: 10.1109/TWC.2023.3266298. -