面向主被动雷达复合探测的全脉冲多机协同干扰方法

蒋雯 贾琼 刘真 王彦平 林赟 李洋 申文杰

蒋雯, 贾琼, 刘真, 等. 面向主被动雷达复合探测的全脉冲多机协同干扰方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25016
引用本文: 蒋雯, 贾琼, 刘真, 等. 面向主被动雷达复合探测的全脉冲多机协同干扰方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25016
JIANG Wen, JIA Qiong, LIU Zhen, et al. Full-pulse multi-jammer cooperative jamming method for active-passive radar composite detection[J]. Journal of Radars, in press. doi: 10.12000/JR25016
Citation: JIANG Wen, JIA Qiong, LIU Zhen, et al. Full-pulse multi-jammer cooperative jamming method for active-passive radar composite detection[J]. Journal of Radars, in press. doi: 10.12000/JR25016

面向主被动雷达复合探测的全脉冲多机协同干扰方法

DOI: 10.12000/JR25016 CSTR: 32380.14.JR25016
基金项目: 国家自然科学基金(62131001, 62371005),北京市自然科学基金青年项目(4234082),北方工业大学毓秀创新项目(2024NCUTYXCX119)
详细信息
    作者简介:

    蒋 雯,博士,讲师,主要研究方向为雷达信号处理、目标探测与识别、雷达智能感知与对抗、雷达系统仿真

    贾 琼,硕士生,主要研究方向为雷达信号处理、雷达干扰识别与对抗

    刘 真,硕士生,主要研究方向为雷达信号处理、主被动雷达目标定位与跟踪

    王彦平,博士,教授,主要研究方向为智能雷达、雷达形变监测、智能预警技术

    林 赟,博士,教授,主要研究方向为多角度SAR三维成像技术

    李 洋,博士,副教授,主要研究方向为极化SAR、雷达多目标跟踪、封闭空间雷达定位与构图

    申文杰,博士,副教授,主要研究方向为SAR动目标检测与成像

    通讯作者:

    王彦平 wangyp@ncut.edu.cn

  • 责任主编:代大海 Corresponding Editor: DAI Dahai
  • 中图分类号: TN958

Full-pulse Multi-jammer Cooperative Jamming Method for Active-passive Radar Composite Detection

Funds: The National Natural Science Foundation of China (62131001, 62371005), The Beijing Natural Science Foundation (4234082), The Yu Xiu Innovation Project of NCUT (2024NCUTYXCX119)
More Information
  • 摘要: 在日益复杂的电磁环境中,主被动雷达复合探测以其良好的优势互补性,已成为提升雷达作战能力和抗干扰能力的重要工作模式。传统的单一压制或欺骗类干扰方法仅对雷达主动或被动模式产生有效干扰,难以对主被动雷达复合探测产生良好的干扰效果。为了能够提高对主被动雷达复合探测的干扰能力,该文提出一种面向主被动雷达复合探测的全脉冲多机协同干扰方法,通过对雷达主动模式下目标的恒虚警率(CFAR)检测原理分析,利用雷达检测概率与信噪比的相关性,调整多假目标的功率序列及位置间距分布,构建全脉冲时域赋形隐蔽干扰模型,实现对雷达主动模式的有效压制;同时,通过对雷达被动模式的测向原理分析,提出一种基于多部干扰机的协同干扰策略,动态调整干扰机的发射功率,在多部干扰机间产生多个随机的欺骗角度,实现雷达被动模式的多角度欺骗效果;最后,通过上述两种策略的有机结合构建全脉冲多机协同干扰方法,实现对主被动雷达复合探测的有效干扰。实验结果表明,与传统单一压制或欺骗类干扰方法相比,该文所提全脉冲多机协同干扰方法能够有效提高雷达CFAR检测门限,降低雷达在主动模式下的检测概率;同时,在干扰机附近区域产生每一帧都不同的虚假角度,扩大角度欺骗范围,综合提升对主被动雷达复合探测的干扰性能。

     

  • 图  1  主被动雷达复合探测示意图

    Figure  1.  Composite detection schematic of active-passive radar

    图  2  密集假目标干扰示意图

    Figure  2.  Schematic diagram of dense false target jamming

    图  3  角度欺骗干扰原理图

    Figure  3.  Schematic diagram of angle deception jamming

    图  4  全脉冲多机协同干扰示意图

    Figure  4.  Schematic diagram of full-pulse multi-jammer cooperative jamming

    图  5  干扰机的时序关系

    Figure  5.  Sequence relationship of jammer

    图  6  雷达干扰对抗仿真场景图

    Figure  6.  Simulation scenario diagram of radar jammer countermeasure

    图  7  雷达检测概率和信噪比之间的关系

    Figure  7.  Relationship between radar detection probability and signal-to-noise ratio

    图  8  全脉冲时域赋形隐蔽干扰假目标个数分析

    Figure  8.  Analysis of the number of false targets in full-pulse time-domain shaping stealth jamming

    图  9  不同幅度比下的欺骗角度

    Figure  9.  Deception angles at different amplitude ratios

    图  10  全脉冲时域赋形隐蔽干扰信号

    Figure  10.  Full-pulse time-domain shaping stealth jamming signal

    图  11  角度欺骗干扰信号

    Figure  11.  Angle deception jamming signal

    图  12  全脉冲多机协同干扰信号

    Figure  12.  Full-pulse multi-jammer cooperative jamming signal

    图  13  有无施加全脉冲时域赋形隐蔽干扰的CFAR检测结果

    Figure  13.  CFAR detection results with and without full-pulse time-domain shaping stealth jamming

    图  14  施加全脉冲时域赋形隐蔽干扰后雷达主、被动模式的检测结果

    Figure  14.  Detection results of radar active and passive modes after applying full-pulse time-domain shaping stealth jamming

    图  15  施加角度欺骗干扰后的检测结果

    Figure  15.  Detection results after applying angle deception jamming

    图  16  施加全脉冲多机协同干扰后的检测结果

    Figure  16.  Detection results after applying full-pulse multi-jammer cooperative jamming

    图  17  不同干扰方式下真实目标检测概率随距离变化曲线

    Figure  17.  Curve of real target detection probability with distance under different jamming modes

    图  18  不同干扰方式下雷达被动检测图

    Figure  18.  Radar passive detection under different jamming modes

    图  19  3部干扰机仿真场景图

    Figure  19.  Simulation scenario of three jammers

    图  20  全脉冲多机协同干扰信号

    Figure  20.  Full-pulse multi-jammer cooperative jamming signal

    图  21  3部干扰机下不同幅度比的雷达波束指向误差角

    Figure  21.  Radar beam pointing error angle of different amplitude ratio under three jammers

    表  1  主被动雷达参数

    Table  1.   Parameters of active-passive radars

    参数 数值 参数 数值
    发射功率$ {P_{\mathrm{t}}} $ 6 MW 信号重复周期$ {T_{\mathrm{r}}} $ 3 ms
    发射增益$ {G_{\mathrm{t}}} $ 41 dB 信号脉宽$ {T_{\rm p}} $ 50 μs
    载频$ {F_{\mathrm{c}}} $ 3.3 GHz 噪声系数F 3 dB
    波束宽度 1.7° 噪声温度T 500 K
    信号带宽B 10 MHz 虚警率$ {P_{{\mathrm{fa}}}} $ 1×10–5
    信号采样率$ {F_{\mathrm{s}}} $ 20 MHz 参考单元长度N 10
    下载: 导出CSV

    表  2  干扰机参数

    Table  2.   Parameters of the jammers

    参数 数值 参数 数值
    干扰机发射功率$ {P_{\mathrm{J}}} $ 10 W 干扰机截面积$ \sigma $ 1 m2
    载频$ {F_{\mathrm{c}}} $ 3.3 GHz 天线增益 10 dB
    下载: 导出CSV

    表  3  不同幅度比下欺骗角度的均值

    Table  3.   Mean values of deception angles under different amplitude ratios

    夹角(°) 幅度比
    0 1 20 50
    0.5 –0.23 0 0.21 0.22
    1.0 –0.49 0 0.42 0.48
    1.5 –0.75 0 0.67 0.74
    下载: 导出CSV

    表  4  不同幅度比下欺骗角度的标准差

    Table  4.   Standard deviations of deception angles under different amplitude ratios

    夹角(°) 幅度比
    0 1 20 50
    0.5 0.012 0.013 0.014 0.016
    1.0 0.013 0.014 0.015 0.016
    1.5 0.013 0.017 0.019 0.020
    下载: 导出CSV
  • [1] 杨军, 张萌. 基于主动探测与被动截获协同的多源异类数据融合定位算法研究[J]. 电子学报, 2018, 46(10): 2467–2471. doi: 10.3969/j.issn.0372-2112.2018.10.021.

    YANG Jun and ZHANG Meng. Research on multi-source heterogeneous data fusion location algorithm based on active detection and passive acquisition[J]. Acta Electronica Sinica, 2018, 46(10): 2467–2471. doi: 10.3969/j.issn.0372-2112.2018.10.021.
    [2] 万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143.

    WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
    [3] 易伟, 袁野, 刘光宏, 等. 多雷达协同探测技术研究进展:认知跟踪与资源调度算法[J]. 雷达学报, 2023, 12(3): 471–499. doi: 10.12000/JR23036.

    YI Wei, YUAN Ye, LIU Guanghong, et al. Recent advances in multi-radar collaborative surveillance: Cognitive tracking and resource scheduling algorithms[J]. Journal of Radars, 2023, 12(3): 471–499. doi: 10.12000/JR23036.
    [4] WU Wenhua, HAN Guojun, CAO Yunhe, et al. MIMO waveform design for radar and communication integrated system in the presence of active interferences[J]. Digital Signal Processing, 2022, 129: 103685. doi: 10.1016/j.dsp.2022.103685.
    [5] LIU Tianpeng, LIAO Dongping, WEI Xizhang, et al. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1867–1876. doi: 10.1109/TAES.2015.140035.
    [6] 万显荣, 吕敏, 谢德强,等. 基于信号结构特点的外源雷达干扰方法研究[J]. 雷达学报, 2020, 9(6): 987–997. doi: 10.12000/JR20124.

    WAN Xianrong, LYU Min, XIE Deqiang, et al. Jamming method of passive radar systems based on characteristics of signal structure[J]. Journal of Radars, 2020, 9(6): 987–997. doi: 10.12000/JR20124.
    [7] ZHANG Yupei, ZHAO Zhijin, and Bu Yi. Radar active jamming recognition under open world setting[J]. Remote Sensing, 2023, 15(16): 4107. doi: 10.3390/rs15164107.
    [8] 陈伯孝. 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2012: 241–256, 269–271, 287–296.

    CHEN Baixiao. Mordern Radar System Analysis and Design[M]. Xi’an: Xi’Dian University Press, 2012: 241–256, 269–271, 287–296.
    [9] 赵燕慧, 汤建龙, 李骥阳, 等. 对降维STAP机载雷达的延时混叠转发干扰方法分析[J]. 系统工程与电子技术, 2020, 42(8): 1718–1725. doi: 10.3969/j.issn.1001-506X.

    ZHAO Yanhui, TANG Jianlong, LI Jiyang, et al. Analysis of time-delay aliasing transmission jamming method for reduced dimension STAP airborne radar[J]. Systems Engineering and Electronics, 2020, 42(8): 1718–1725. doi: 10.3969/j.issn.1001-506X.
    [10] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080.

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080.
    [11] 王雪松, 刘建成, 张文明,等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑: 信息科学, 2006, 36(8): 891–901. doi: 10.1360/zf2006-36-8-891.

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series E: Information Science, 2006, 36(8): 891–901. doi: 10.1360/zf2006-36-8-891.
    [12] FENG Dejun, TAO Huamin, YANG Yong, et al. Jamming de-chirping radar using interrupted-sampling repeater[J]. Science China Information Sciences, 2011, 54(10): 2138–2146. doi: 10.1007/s11432-011-4431-4.
    [13] WEI Jingyi, LI Yachao, YANG Rui, et al. A nonuniformly distributed multi-pulse coded waveform to combat azimuth interrupted sampling repeater jamming in SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9054–9066. doi: 10.1109/TAES.2023.3313104.
    [14] 潘小义, 王伟, 冯德军, 等. 基于全脉冲分段转发的LFM雷达干扰方法[J]. 国防科技大学学报, 2013, 35(3): 119–125. doi: 10.3969/j.issn.1001-2486.2013.03.021.

    PAN Xiaoyi, WANG Wei, FENG Dejun, et al. Repeat jamming against LFM radars based on pulse separation[J]. Journal of National University of Defense Technology, 2013, 35(3): 119–125. doi: 10.3969/j.issn.1001-2486.2013.03.021.
    [15] 刘峥, 沈福民, 张守宏. 单脉冲跟踪雷达抗距离欺骗干扰方法[J]. 西安电子科技大学学报, 1997, 24(S1): 82–87.

    LIU Zheng, SHEN Fumin, and ZHANG Shouhong. A study of a mono-pulse radar to counter the range cheat jamming[J]. Journal of XiDian University, 1997, 24(S1): 82–87.
    [16] CHEN Yang, TIAN Bo, WANG Chunyang, et al. Improved MUSIC method against range dimension deceptive jamming based on FDA-MIMO[J]. Applied Sciences. 2022, 12(22): 11695. doi. 10.3390/app122211695.
    [17] 王琪, 廖志忠, 燕飞. 基于概率数据关联的雷达导引头抗速度拖引干扰算法[J]. 系统工程与电子技术, 2022, 44(2): 448–454. doi: 10.12305/j.issn.1001-506X.

    WANG Qi, LIAO Zhizhong, and YAN Fei. Algorithm for countering velocity gate pull-off jamming of radar seeker based on probability data association[J]. Systems Engineering and Electronics, 2022, 44(2): 448–454. doi: 10.12305/j.issn.1001-506X.
    [18] 李永祯, 胡万秋, 程旭, 等. 相干两点源角欺骗干扰的极化鉴别方法研究[J]. 兵工学报, 2013, 34(9): 1078–1083. doi: 10.3969/j.issn.1000-1093.2013.09.004.

    LI Yongzhen, HU Wanqiu, CHENG Xu, et al. Research on polarization discrimination algorithm for coherent dual-source angle deception interference[J]. Acta Armamentarii, 2013, 34(9): 1078–1083. doi: 10.3969/j.issn.1000-1093.2013.09.004.
    [19] PIETERSE F P and DU PLESSIS W P. Implementation and testing of a retrodirective cross-eye jammer[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4486–4494. doi: 10.1109/TAES.2022.3164017.
    [20] 黄大通, 邢世其, 徐伟, 等. 对多通道SAR欺骗干扰抑制的多干扰机协同调幅对抗方法[J]. 电子学报, 2023, 51(9): 2301–2312. doi: 10.12263/DZXB.20211247.

    HUANG Datong, XING Shiqi, XU Wei, et al. A cooperative countermeasure of multiple jammers against multi-channel SAR deception jamming suppression based on amplitude modulation[J]. Acta Electronica Sinica, 2023, 51(9): 2301–2312. doi: 10.12263/DZXB.20211247.
    [21] ZHANG Wenxu, ZHAO Tong, ZHAO Zhongkai, et al. Performance analysis of deep reinforcement learning-based intelligent cooperative jamming method confronting multi-functional networked radar[J]. Signal Processing, 2023, 207: 108965. doi: 10.1016/j.sigpro.2023.108965.
    [22] LIU Feilong, ZHU Shengqi, XU Jingwei, et al. Fast repeater deception jamming suppression with DFI-FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4271–4284. doi: 10.1109/TAES.2024.3374711.
    [23] ZHOU Changlin, WANG Chunyang, GONG Jian, et al. Phase characteristics and angle deception of frequency-diversity-array-transmitted signals based on time index within pulse[J]. Remote Sensing, 2023, 15(21): 5171. doi 10.3390/rs15215171.
    [24] BANG Huang, WANG Wenqin, ZHANG Shunsheng, et al. FDA-based space-time-frequency deceptive jamming against SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2127–2140. doi: 10.1109/TAES.2021.3130212.
    [25] 解烽, 刘环宇, 胡锡坤, 等. 基于复数域深度强化学习的多干扰场景雷达抗干扰方法[J]. 雷达学报, 2023, 12(6): 1290–1304. doi: 10.12000/JR23139.

    XIE Feng, LIU Huanyu, HU Xikun, et al. A radar anti-jamming method under multi-jamming scenarios based on deep reinforcement learning in complex domains[J]. Journal of Radars, 2023, 12(6): 1290–1304. doi: 10.12000/JR23139.
    [26] BACHMANN D J, EVANS R J, and MORAN B. Game theoretic analysis of adaptive radar jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1081–1100. doi: 10.1109/TAES.2011.5751244.
    [27] 吴兆东, 胡生亮, 罗亚松, 等. 舷外有源诱饵对雷达末制导目标定位的干扰动态分析[J]. 电子科技大学学报, 2023, 52(5): 709–717. doi: 10.12178/1001-0548.2022282.

    WU Zhaodong, HU Shengliang, LUO Yasong, et al. Dynamic analysis of outboard active decoy jamming on target location of terminal radar guidance[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(5): 709–717. doi: 10.12178/1001-0548.2022282.
    [28] 马佳智, 施龙飞, 徐振海, 等. 单脉冲雷达多点源参数估计与抗干扰技术进展[J]. 雷达学报, 2019, 8(1): 125–139. doi: 10.12000/JR18093.

    MA Jiazhi, SHI Longfei, XU Zhenhai, et al. Overview of multi-source parameter estimation and jamming mitigation for monopulse radars[J]. Journal of Radars, 2019, 8(1): 125–139. doi: 10.12000/JR18093.
    [29] 丁鹭飞, 耿富禄, 陈建春. 雷达原理[M]. 北京: 电子工业出版社, 2020: 180–182.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Principle of radar[M]. Beijing, Publishing House of Electronics Industry, 2020: 180–182.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-05-09

目录

    /

    返回文章
    返回