基于匹配滤波特征的抗间歇采样转发干扰方法

张顺生 黄盼 王文钦

张顺生, 黄盼, 王文钦. 基于匹配滤波特征的抗间歇采样转发干扰方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25015
引用本文: 张顺生, 黄盼, 王文钦. 基于匹配滤波特征的抗间歇采样转发干扰方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25015
ZHANG Shunsheng, HUANG Pan, and WANG Wenqin. Suppression of interrupted-sampling repeater jamming based on matched filtering features[J]. Journal of Radars, in press. doi: 10.12000/JR25015
Citation: ZHANG Shunsheng, HUANG Pan, and WANG Wenqin. Suppression of interrupted-sampling repeater jamming based on matched filtering features[J]. Journal of Radars, in press. doi: 10.12000/JR25015

基于匹配滤波特征的抗间歇采样转发干扰方法

DOI: 10.12000/JR25015 CSTR: 32380.14.JR25015
基金项目: 国家部委基金
详细信息
    作者简介:

    张顺生,博士,研究员,主要研究方向为新体制雷达探测与成像、人工智能技术在雷达、电子战中的应用等

    黄 盼,硕士生,主要研究方向为分布式相参雷达抗干扰

    王文钦,博士,教授,主要研究方向为新体制雷达、雷达信号处理和电子对抗技术

    通讯作者:

    张顺生 zhangss@uestc.edu.cn

  • 责任主编:胡卫东 Corresponding Editor: HU Weidong
  • 中图分类号: TN972

Suppression of Interrupted-sampling Repeater Jamming Based on Matched Filtering Features

Funds: The National Ministries Foundation
More Information
  • 摘要: 分布式相参雷达实现全相参的关键在于对感兴趣目标进行发射相参合成。当相参参数估计阶段存在间歇采样转发干扰时,实现发射相参是极为困难的。为解决上述问题,该文提出了一种基于间歇采样转发干扰匹配滤波特征的干扰抑制方法。该方法能够弥补低干噪比条件下无法进行时频域滤波的缺陷,同时为高干噪比条件下进行干扰重构和对消提供了一种更精确的干扰参数估计途径。仿真结果表明,所提方法对间歇采样转发干扰的抑制效果显著。在低干噪比条件下相比于其他方法准确检测目标的概率提升了40%以上,在高干噪比条件下相比于其他方法等效信干比改善了2.5 dB以上。

     

  • 图  1  DCAR干扰场景示意图

    Figure  1.  DCAR Jamming scenario

    图  2  ISRJ基本原理

    Figure  2.  ISRJ basic principle

    图  3  低JNR条件下回波脉冲压缩的时频分布图

    Figure  3.  TFD of pulse compression with low JNR

    图  4  高JNR条件下匹配滤波示意图

    Figure  4.  Matching filtering with high JNR

    图  5  高JNR条件下BDWPE检测示意图

    Figure  5.  BDWPE detection with high JNR

    图  6  DCAR接收相参阶段抑制ISRJ流程图

    Figure  6.  ISRJ suppression flow during the receiving coherent of DCAR

    图  7  单元雷达A回波脉冲压缩结果图

    Figure  7.  Pulse compression results based on radar A echo

    图  8  单元雷达A回波脉冲压缩的时频分布

    Figure  8.  Time-frequency distribution of pulse compression based on radar A echo

    图  9  以参考信号A做脉冲压缩结果

    Figure  9.  PC results based on reference signal A

    图  10  不同SNR下TDP随输入JSR的变化

    Figure  10.  Comparison of methods in interference interference scenarios

    图  11  不同干扰场景下的方法对比

    Figure  11.  Comparison of methods in interference interference scenarios

    图  12  单元雷达A 中ISPRJ抑制前后脉压结果图

    Figure  12.  Pulse compression results before and after ISPRJ suppression in radar A

    图  13  单元雷达A回波ISRJ抑制前后脉压结果图

    Figure  13.  Pulse compression results before and after ISRJ suppression in radar A

    图  14  性能指标随不同干扰参数估计误差的变化曲线

    Figure  14.  The variation curves of performance index with estimation errors of different interference parameters

    图  15  干扰抑制前后PPRIF随脉压后JNR的变化

    Figure  15.  The changes of PPRIF with JNR after PC before and after jamming suppression

    图  16  ISRJ参数估计的RMSE随脉压后JNR的变化

    Figure  16.  The RMSE of the estimated parameter of ISRJ changes with JNR after PC

    图  17  ISRJ抑制前后$ \Delta \tau $的RMSE随脉压后JNR的变化情况

    Figure  17.  The changes of RMSE of $ \Delta \tau $ with JNR after PC before and after ISRJ suppression

    图  18  ISRJ抑制前后$ \Delta \varphi $的绝对误差随脉压后JNR的变化情况

    Figure  18.  The changes of absolute error of $ \Delta \varphi $ with JNR after PC before and after ISRJ suppression

    1  低JNR条件下干扰抑制流程

    1.   Jamming suppression flow with low JNR

     步骤1 单元雷达接收目标回波和干扰信号;
     步骤2 对回波进行匹配滤波处理,并估计转发次数$ \tilde M $;
     步骤3 对步骤2结果取峰值点个数$\left[ {3\tilde M + 1,\;\;2{{\tilde M}^2} + \tilde M + 1} \right]$,
     在距离维上计算一阶差分,确定干扰极值点的相对间距$ \Delta R $;
     步骤4 根据$\tilde M$和$ \Delta R $计算$ {\tilde T_{\rm u}} $、$ {\tilde T_{\rm j}} $,并判定干扰类型;
     步骤5 根据步骤3、步骤4结果搜索异常间距$\Delta \tilde R$是否存在;
     若存在,则追溯其目标峰值位置;若不存在,则执行步骤6;
     步骤6 退出该流程。
    下载: 导出CSV

    表  1  基于ISRJ匹配滤波特征的参数估计

    Table  1.   Parameters estimation based on ISRJ matching filter features

    估计参数 估计途径
    转发次数$ \tilde M $ 计算干扰群数量
    采样周期${\tilde T_{\rm u}}$ 计算极值点间隔$\Delta R$
    采样有效时长${\tilde T_{\rm j}}$ 计算$\tilde M$,${\tilde T_{\rm u}}$
    干扰到达时间${\text{TOAJ}}$ 计算干扰峰值点时延
    注:${\text{TOAJ}}$: Time of Arrival of Jamming。
    下载: 导出CSV

    表  2  雷达相关参数

    Table  2.   Radar parameters

    参数 数值
    脉冲宽度${T_{\rm p}}$ $20\;{\text{μs}}$
    信号带宽B 50 MHz
    采样率${f_s}$ 100 MHz
    中心载频${f_{\rm c}}$ 10 GHz
    目标径向距离R 10050 m
    下载: 导出CSV

    表  3  干扰机相关参数

    Table  3.   Jammer parameters

    参数 数值
    干扰采样有效时长${T_{\rm j}}$ ${\text{1}}\;{\text{μs}}$
    干扰采样周期${T_{\rm u}}$ ${\text{3}}\;{\text{μs}}$
    干扰转发次数M 2
    干扰转发时延${T_{\rm d}}$ ${\text{1}}\;{\text{μs}}$
    信噪比SNR –17 dB
    干信比JSR 12 dB
    注:JSR: Jamming-to-Signal Ratio
    下载: 导出CSV
  • [1] 鲁耀兵, 高红卫, 周宝亮. 分布式孔径相参合成雷达技术[J]. 雷达学报, 2017, 6(1): 55–64. doi: 10.12000/JR17014.

    LU Yaobing, GAO Hongwei, and ZHOU Baoliang. Distributed aperture coherence-synthetic radar technology[J]. Journal of Radars, 2017, 6(1): 55–64. doi: 10.12000/JR17014.
    [2] 曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104.

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104.
    [3] YU Yonglin, WANG Jun, YANG Bin, et al. Time and phase synchronization methods fordistributed coherent aperture radar[C]. 2024IEEE International Conference on Signal, Information and Data Processing, Zhuhai, China, 2024: 1-5. doi: 10.1109/ICSIDP62679.2024.10868527.
    [4] LI Hao, LIU Hongjie, MIAO Yingjie, et al. Research on coherent synthesis based on distributed radar system[C]. 2022 IEEE International Conference on Signal Processing, Communications and Computing, Xi'an, China, 2022: 1-5. doi: 10.1109/ICSPCC55723.2022.9984501.
    [5] SCHMID R L, COMBERIATE T M , HODKIN J E, et al. A distributed RF transmitter using one-way wireless clock transfer[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(2): 195–197. doi: 10.1109/LMWC.2017.2648510.
    [6] JARDAK S, YODA D, and MORI H. Combined ISAR and MIMO processing for near-field 3D radar imaging[C]. 2021 18th European Radar Conference. London, UK, 2022: 409-412. doi: 10.23919/EuRAD50154.2022.9784572.
    [7] 王锐. 分布式全相参雷达参数估计及ISAR成像方法研究[D]. [博士论文], 北京理工大学, 2015.

    WANG Rui. Research on parameter estimation and ISAR imaging for distributed coherent radar[D]. [Ph.D. dissertation], Beijing Institute of Technology,2015.
    [8] 王勇, 杨佳兴, 李亚军, 等. 舰载ISAR成像平台运动补偿新方法研究[J]. 制导与引信, 2020, 41(2): 26–32,42. doi: 10.3969/j.issn.1671-0576.2020.02.006.

    WANG Yong, YANG Jiaxing, LI Yajun, et al. Research on a new method of platform motion compensation for shipborne ISAR imaging[J]. Guidance & Fuze, 2020, 41(2): 26–32,42. doi: 10.3969/j.issn.1671-0576.2020.02.006.
    [9] ZHANG Yi and TAO Haihong. Spatial Multi-Interference Suppression in Monopulse Radar With Reconfigurable Distributed Array Nodes[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16566–16581. doi: 10.1109/TVT.2024.3423767.
    [10] ZHANG Honggang, LUO Jian, CHEN Xinliang, et al. Whitening filter for mainlobe interference suppression in distributed array radar[C]. 2016 CIE International Conference on Radar. Guangzhou, China. 2016: 1-5. doi: 10.1109/RADAR.2016.8059238.
    [11] ZHU Dan, CHEN Wenjuan, LIU Sijia,et al. Photonics-Assisted Radio Frequency Memory[J]. Journal of Lightwave Technology, 2022, 40(3): 624–631. doi: 10.1109/JLT.2021.3122141.
    [12] 史朝鹏, 吴灏, 王万田, 等. 一种抗间歇采样转发干扰的脉内自适应凹陷LFM 波形设计方法[J/OL]. 系统工程与电子技术. https://link.cnki.net/urlid/11.2422.tn.20240813.1409.004, 2024.

    SHI Zhaopeng, WU Hao, WANG Wantian, et al. An intra-pulse adaptive notch LFM waveform design method for anti-interrupted sampling repeater jamming[J/OL]. Systems Engineering and Electronics. https://link.cnki.net/urlid/11.2422.tn.20240813.1409.004, 2024.
    [13] 王荣清, 谢旌阳, 田彪, 等. 联合干扰感知与参数估计的抗间歇采样转发干扰方法[J]. 雷达学报(中英文), 2024, 13(6): 1337–1354. doi: 10.12000/JR24153.

    WANG Rongqing, XIE Jingyang, TIAN Biao, et al. Integrated jamming perception and parameter estimation method for anti-interrupted sampling repeater jamming[J]. Journal of Radars, 2024, 13(6): 1337–1354. doi: 10.12000/JR24153.
    [14] 周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06.

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06.
    [15] ZHANG Jiaxiang and ZHOU Chao. Interrupted sampling repeater jamming suppression method based on hybrid modulated radar signal[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–4. doi: 10.1109/ICSIDP47821.2019.9173093.
    [16] SHI Zhaopeng, WANG Wantian, WU Hao, et al. A New Pulse Modulated LFM Waveform Design Method for Suppressing Interrupted Sampling Repeater Jamming[C]. 2023IEEE 23rd International Conference on Communication Technology, Wuxi, China, 2023: 336–340. doi: 10.1109/ICCT59356.2023.10419557.
    [17] CHEN Jian,WU Wenzhen,XU Shiyou,et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658.
    [18] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/ JR18080. doi: 10.12000/JR18080.

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080.
    [19] 盖季妤, 姜维, 张凯翔, 等. 基于差分特征的间歇采样转发干扰辨识与抑制方法[J]. 雷达学报, 2023, 12(1): 186–196. doi: 10.12000/JR22058.

    GAI Jiyu, JIANG Wei, ZHANG Kaixiang, et al. A method for interrupted-sampling repeater jamming identification and suppression based on differential features[J]. Journal of Radars, 2023, 12(1): 186–196. doi: 10.12000/JR22058.
    [20] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114.
    [21] LU Lu and GAO Meiguo. A truncated matched filter method for interrupted sampling repeater jamming suppression based on jamming reconstruction[J]. Remote Sensing, 2022, 14(1): 97. doi: 10.3390/rs14010097.
    [22] 周超, 刘泉华, 曾涛. DRFM间歇采样转发式干扰辨识算法研究[J]. 信号处理, 2017, 33(7): 911–917. doi: 10.16798/j.issn.1003-0530.2017.07.002.

    ZHOU Chao, LIU Quanhua, and ZENG Tao. Research on DRFM repeater jamming recognition[J]. Journal of Signal Processing, 2017, 33(7): 911–917. doi: 10.16798/j.issn.1003-0530.2017.07.002.
    [23] 张飘平, 谢荣, 朱鸿宇, 等. 间歇采样转发干扰参数估计算法研究[J]. 信号处理, 2025, 41(1): 43–54. doi: 10.12466/xhcl.2025.01.004.

    ZHANG Piaoping, XIE Rong, ZHU Hongyu, et al. Study on parameter estimation algorithm for interrupted-sampling repeater jamming[J]. Journal of Signal Processing, 2025, 41(1): 43–54. doi: 10.12466/xhcl.2025.01.004.
    [24] 陈静, 李晗, 张洪纲, 等. 分布式雷达主瓣间歇采样转发干扰抑制方法[J]. 信号处理, 2018, 34(11): 1368–1376. doi: 10.16798/j.issn.1003-0530.2018.11.013.

    CHEN Jing, LI Han, ZHANG Honggang, et al. Mainlobe interrupted sampling repeater jamming suppression method in distributed radar[J]. Journal of Signal Processing, 2018, 34(11): 1368–1376. doi: 10.16798/j.issn.1003-0530.2018.11.013.
    [25] CHEN Jing, CHEN Xinliang, ZHANG Honggang, et al. Suppression Method for Main-Lobe Interrupted Sampling Repeater Jamming in Distributed Radar[J]. IEEE Access, 2020, 8(8): 139255–139265. doi: 10.1109/ACCESS.2020.3000278.
    [26] 刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001.

    LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001.
    [27] 施闯, 张东, 宋伟, 等. 北斗广域高精度时间服务原型系统[J]. 测绘学报, 2020, 49(3): 269–277. doi: 10.11947/j.AGCS.2020.20180534.

    SHI Chuang,ZHANG Dong,SONG Wei,et al. BeiDou wide-area precise timing prototype system[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 269–277. doi: 10.11947/j.AGCS.2020.20180534.
    [28] 李尚远, 肖雪迪, 郑小平. 基于微波光子学的分布式相参孔径雷达[J]. 雷达学报, 2019, 8(2): 178–188. doi: 10.12000/JR19024.

    LI Shangyuan,XIAO Xuedi,and ZHENG Xiaoping. Distributed coherent aperture radar enabled by microwave photonics[J]. Journal of Radars, 2019, 8(2): 178–188. doi: 10.12000/JR19024.
    [29] 殷丕磊, 张洪纲, 翟腾普, 等. 基于Kalman滤波的分布式全相参雷达相参参数估计方法[J]. 北京理工大学学报, 2016, 36(3): 282–288. doi: 10.15918/j.tbit1001-0645.2016.03.012.

    YIN Pilei, ZHANG Honggang, ZHAI Tengpu, et al. Coherent parameters estimation using Kalman filter in distributed coherent aperture radar[J]. Transactions of Beijing Institute of Technology, 2016, 36(3): 282–288. doi: 10.15918/j.tbit1001-0645.2016.03.012.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-04-29

目录

    /

    返回文章
    返回