FDA-MIMO雷达和MIMO通信频谱共存系统收发联合设计方法

徐启航 兰岚 廖桂生 王可为 郑通兴

徐启航, 兰岚, 廖桂生, 等. FDA-MIMO雷达和MIMO通信频谱共存系统收发联合设计方法[J]. 雷达学报(中英文), 2025, 14(4): 915–927. doi: 10.12000/JR25014
引用本文: 徐启航, 兰岚, 廖桂生, 等. FDA-MIMO雷达和MIMO通信频谱共存系统收发联合设计方法[J]. 雷达学报(中英文), 2025, 14(4): 915–927. doi: 10.12000/JR25014
XU Qihang, LAN Lan, LIAO Guisheng, et al. Transceiver design for an FDA-MIMO radar and MIMO communication spectral coexistence system[J]. Journal of Radars, 2025, 14(4): 915–927. doi: 10.12000/JR25014
Citation: XU Qihang, LAN Lan, LIAO Guisheng, et al. Transceiver design for an FDA-MIMO radar and MIMO communication spectral coexistence system[J]. Journal of Radars, 2025, 14(4): 915–927. doi: 10.12000/JR25014

FDA-MIMO雷达和MIMO通信频谱共存系统收发联合设计方法

DOI: 10.12000/JR25014 CSTR: 32380.14.JR25014
基金项目: 国家自然科学基金(62471348,62431021),中央高校基本科研业务费(QTZX23068),陕西省科技新星(2024ZC-KJXX-009),多域数据协同处理与控制全国重点实验室开放基金(MDPC20200403),中国航空科学基金(ASFC-2022Z021070001)
详细信息
    作者简介:

    徐启航,博士生,主要研究方向为阵列信号处理、通感一体化等

    兰 岚,博士,副教授,主要研究方向为新体制阵列雷达信号处理、智能化抗干扰、目标检测与参数估计等

    廖桂生,博士,教授,主要研究方向为阵列信号处理、空时自适应处理、新体制雷达等

    王可为,博士生,主要研究方向为物理层安全、隐蔽通信、通感一体化、智能可重构天线等

    郑通兴,博士,副教授,主要研究方向为物理层安全、隐蔽通信、通感一体化、智能可重构天线、随机几何等

    通讯作者:

    兰岚 lanlan@xidian.edu.cn

  • 责任主编:李焱磊 Corresponding Editor: LI Yanlei
  • 中图分类号: TN957

Transceiver Design for an FDA-MIMO Radar and MIMO Communication Spectral Coexistence System

Funds: The National Natural Science Foundation of China (62471348, 62431021), the Fundamental Research Funds for the Central Universities (QTZX23068), the Young Science and Technology Star of Shaanxi Province (2024ZC-KJXX-009), the Open Research Fund of National Key Laboratory of Multi-domain Data Collaborative Processing and Control under Grant (MDPC20200403), the Aeronautical Science Foundation of China under Grant (ASFC-2022Z021070001)
More Information
  • 摘要: 雷达与通信在一个平台占用相同频谱时会产生相互干扰,此外雷达目标探测过程中面临主瓣方向的欺骗式干扰威胁。为解决上述问题,该文设计了一种频率分集阵多输入多输出(FDA-MIMO)雷达和MIMO通信频谱共存系统,提出了一种雷达为中心的系统收发参数联合设计方法。该方法通过联合优化雷达发射波形、雷达接收滤波器和通信发射码本,最大化雷达系统的输出信干噪比(SINR),从而提高对目标的检测概率,同时保证MIMO通信速率。在优化过程中,采用交替优化(AO)策略,将优化问题分解为多个子问题并迭代求解。其中,接收滤波器的优化通过拉格朗日乘子法求解,通信发射码本优化采用不等式定理得到最优近似解,而雷达发射波形优化通过泰勒展开和松弛算法进行凸近似。仿真结果表明,该联合设计方法能够在保证通信速率的同时有效提高雷达系统的SINR,显著提升FDA-MIMO雷达和MIMO通信频谱共存系统在主瓣欺骗式干扰下的性能。

     

  • 图  1  FDA-MIMO雷达和MIMO通信频谱共存系统模型

    Figure  1.  FDA-MIMO radar and MIMO communication spectral coexistence system model

    图  2  联合优化后SINR随着迭代次数的变化曲线

    Figure  2.  SINR convergence with iteration number after joint optimization

    图  3  不同$\xi $条件SINR随着迭代次数的变化曲线

    Figure  3.  SINR convergence with iteration number under varying parameter $\xi $

    图  4  算法优化后方向图对比

    Figure  4.  Comparison of beampattern performance through algorithm optimization

    图  5  给定循环次数下的检测概率

    Figure  5.  Pd at a given iteration

    图  6  输出SINR随输入SNR的关系

    Figure  6.  SINR versus SNRS

    图  7  输出SINR在不同通信干扰下的变化情况

    Figure  7.  SINR versus INR of communication

    图  8  输出SINR在不同假目标干扰下的变化情况

    Figure  8.  SINR versus JNR of false target

    1  基于AO的FDA-MIMO雷达和MIMO通信频谱共存系统收发联合优化算法

    1.   Transceiver design for FDA-MIMO radar and MIMO communication spectral coexistence system based on AO strategy

     输入:${C_{\mathrm{t}}}$, ${E_{\mathrm{t}}}$, $\xi $, $\varsigma $
     初始化:$n = 0$, $ {\boldsymbol{R}}_{\text{x}}^{\left( {0} \right)} = \left( {{E_{\text{t}}}/(L{N_{\text{t}})}} \right){{\boldsymbol{I}}_{{N_{\text{t}}}L}} $, ${{\boldsymbol{s}}^{\left( 0 \right)}}$, ${{\boldsymbol{w}}^{\left( 0 \right)}}$
     repeat
     1.$n = n + 1$
     2.根据式(25)计算接收滤波器${{\boldsymbol{w}}^{\left( n \right)}}$
     3.使用MATLAB中的linprog函数求解问题式(34)得到通信码本
      $ {\boldsymbol{R}}_{\text{x}}^{\left( n \right)} $
     4.使用MATLAB中的CVX工具箱求解问题式(44),再利用秩1近
      似法得到雷达波形${{\boldsymbol{s}}^{\left( n \right)}}$
     5.计算当前${\text{SIN}}{{\text{R}}^{\left( n \right)}}$
     until $\left| {{\text{SIN}}{{\text{R}}^{\left( n \right)}} - {\text{SIN}}{{\text{R}}^{\left( {n - 1} \right)}}} \right| < \varsigma $
     输出:${{\boldsymbol{w}}_{{\text{opt}}}} = {{\boldsymbol{w}}^{\left( n \right)}}$, ${{\boldsymbol{s}}_{{\text{opt}}}} = {{\boldsymbol{s}}^{\left( n \right)}}$, ${{\boldsymbol{R}}_{\text{x}}}_{{\text{opt}}} = {\boldsymbol{R}}_{\text{x}}^{\left( n \right)}$,
        ${\text{SIN}}{{\text{R}}_{{\text{opt}}}} = {\text{SIN}}{{\text{R}}^{\left( n \right)}}$
    下载: 导出CSV

    表  1  FDA-MIMO雷达和MIMO通信频谱共存系统参数表

    Table  1.   FDA-MIMO radar and MIMO communication spectral coexistence system simulation parameters

    参数 取值 参数 取值
    载频$ {f_0} $ 1 GHz ${{\boldsymbol{H}}_{{\text{CR}}}}$路径数${P_1}$ 15
    频偏$\Delta f$ 3000 Hz ${{\boldsymbol{H}}_{{\text{RC}}}}$路径数${P_2}$ 15
    码长L 6 目标信噪比 10 dB
    下载: 导出CSV
  • [1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [2] ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329.
    [3] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113.

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
    [4] LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/COMST.2022.3149272.
    [5] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [6] 梁兴东, 李强, 王杰, 等. 雷达通信一体化技术研究综述[J]. 信号处理, 2020, 36(10): 1615–1627. doi: 10.16798/j.issn.1003-0530.2020.10.001.

    LIANG Xingdong, LI Qiang, WANG Jie, et al. Joint wireless communication and radar sensing: Review and future prospects[J]. Journal of Signal Processing, 2020, 36(10): 1615–1627. doi: 10.16798/j.issn.1003-0530.2020.10.001.
    [7] 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146.

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146.
    [8] FOSCHINI G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996, 1(2): 41–59. doi: 10.1002/bltj.2015.
    [9] CUI Mingyao, WU Zidong, LU Yu, et al. Near-Field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2022, 61(1): 40–46. 10.1109/MCOM.004.2200136.
    [10] 何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128.

    HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128.
    [11] 薛磊, 唐波, 李达. 面向频谱共存的MIMO雷达波形设计综述[J]. 信息对抗技术, 2023, 2(4): 70–92. doi: 10.12399/j.issn.2097-163x.2023.04-05.005.

    XUE Lei, TANG Bo, and LI Da. MIMO radar waveform design for spectral coexistence: An overview[J]. Information Countermeasure Technology, 2023, 2(4): 70–92. doi: 10.12399/j.issn.2097-163x.2023.04-05.005.
    [12] ZHANG Haoyu, CHEN Li, HAN Kaifeng, et al. Coexistence designs of radar and communication systems in a multi-path scenario[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3733–3749. doi: 10.1109/TVT.2023.3325544.
    [13] LI Da, TANG Bo, WANG Xuyang, et al. Codesign for spectral coexistence between RIS-aided MIMO radar and MIMO communication systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8166–8183. doi: 10.1109/TAES.2024.3431514.
    [14] YU Xianxiang, QIU Hui, YANG Jing, et al. Multispectrally constrained MIMO radar beampattern design via sequential convex approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2935–2949. doi: 10.1109/TAES.2022.3150619.
    [15] SODAGARI S, KHAWAR A, CLANCY T C, et al. A projection based approach for radar and telecommunication systems coexistence[C]. IEEE Global Communications Conference (GLOBECOM), Anaheim, USA, 2012: 5010–5014. doi: 10.1109/GLOCOM.2012.6503914.
    [16] LIU Fan, MASOUROS C, LI Ang, et al. MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681–3695. doi: 10.1109/TSP.2018.2833813.
    [17] LI Bo, PETROPULU A P, and TRAPPE W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562–4575. doi: 10.1109/TSP.2016.2569479.
    [18] QIAN Junhui, LOPS M, ZHENG Le, et al. Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3504–3519. doi: 10.1109/TSP.2018.2831624.
    [19] WANG Fangzhou and LI Hongbin. Power allocation for coexisting multicarrier radar and communication systems in cluttered environments[J]. IEEE Transactions on Signal Processing, 2021, 69: 1603–1613. doi: 10.1109/TSP.2021.3060003.
    [20] TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186.
    [21] QIAN Junhui, ZHANG Jinru, XU Peng, et al. Spectral coexistence for power-harvested multiuser communication system with radar[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 12258–12263. doi: 10.1109/TVT.2024.3377892.
    [22] QIAN Junhui, LIU Ziyu, WANG Kezhong, et al. Transmission design for radar and communication spectrum sharing enhancement[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2723–2727. doi: 10.1109/TVT.2022.3207609.
    [23] SHI Shengnan, HE Zishu, and CHENG Ziyang. Codesign for hybrid MU-MIMO communication and MIMO radar systems based on mutual information[J]. IEEE Systems Journal, 2023, 17(1): 1328–1339. doi: 10.1109/JSYST.2022.3201773.
    [24] HONG Bingqing, WANG Wenqin, and LIU Congcong. Ergodic interference alignment for spectrum sharing radar-communication systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9785–9796. doi: 10.1109/TVT.2019.2933290.
    [25] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
    [26] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029.

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029.
    [27] 兰岚, 廖桂生, 许京伟, 等. FDA-MIMO雷达主瓣距离欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2018, 40(5): 997–1003. doi: 10.3969/j.issn.1001-506X.2018.05.06.

    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Main-beam range deceptive jamming suppression approach with FDA-MIMO radar[J]. Systems Engineering and Electronics, 2018, 40(5): 997–1003. doi: 10.3969/j.issn.1001-506X.2018.05.06.
    [28] 兰岚, 廖桂生, 许京伟, 等. 基于频率分集阵列的多功能一体化波形设计与信号处理方法[J]. 雷达学报, 2022, 11(5): 850–870. doi: 10.12000/JR22163.

    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Waveform design and signal processing method of a multifunctional integrated system based on a frequency diverse array[J]. Journal of Radars, 2022, 11(5): 850–870. doi: 10.12000/JR22163.
    [29] LAN Lan, ZHANG Yitao, XU Jingwei, et al. Suppressing mainlobe deceptive jammers via two-low-rank matrix decomposition in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 2885–2898. doi: 10.1109/TAES.2024.3480030.
    [30] LAN Lan, ROSAMILIA M, AUBRY A, et al. FDA-MIMO transmitter and receiver optimization[J]. IEEE Transactions on Signal Processing, 2024, 72: 1576–1589. doi: 10.1109/TSP.2024.3366438.
    [31] JIAN jiangwei, HUANG Qimao, HUANG bang, et al. FDA-MIMO-Based integrated sensing and communication system with frequency offsets permutation index modulation[J]. IEEE Transactions on Communications, 2024, 72(11): 6707–6721. doi: 10.1109/TCOMM.2024.3402608.
    [32] JI Shilong, WANG Wenqin, CHEN Hui, et al. On physical-layer security of FDA communications over Rayleigh fading channels[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 476–490. doi: 10.1109/TCCN.2019.2906896.
    [33] NUSENU S Y, SHAO Huaizong, PAN Ye, et al. Dual-function radar-communication system design via sidelobe manipulation based on FDA butler matrix[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 452–456. doi: 10.1109/LAWP.2019.2894015.
    [34] GONG Pengcheng, XU Kaiyan, WU Yuntao, et al. Optimization of LPI-FDA-MIMO radar and MIMO communication for spectrum coexistence[J]. IEEE Wireless Communications Letters, 2023, 12(6): 1076–1080. doi: 10.1109/LWC.2023.3261419.
    [35] LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045.
    [36] SAYEED A M. Deconstructing multiantenna fading channels[J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2563–2579. doi: 10.1109/TSP.2002.803324.
    [37] LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Achievable sum-rate capacity optimization for joint MIMO multiuser communications and radar[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021: 466–470. doi: 10.1109/SPAWC51858.2021.9593259.
    [38] CHEN Zihao, LIANG Junli, SONG Keman, et al. On designing good doppler tolerance waveform with low PSL of ambiguity function[J]. Signal Processing, 2023, 210: 109075. doi: 10.1016/j.sigpro.2023.109075.
    [39] 郝天铎, 崔琛, 龚阳, 等. 基于凸优化方法的认知雷达低峰均比波形设计[J]. 雷达学报, 2018, 7(4): 498–506. doi: 10.12000/JR18002.

    HAO Tianduo, CUI Chen, GONG Yang, et al. Waveform design for cognitive radar under low par constraints by convex optimization[J]. Journal of Radars, 2018, 7(4): 498–506. doi: 10.12000/JR18002.
    [40] CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086.
    [41] MIRSKY L. A trace inequality of John von Neumann[J]. Monatshefte für Mathematik, 1975, 79(4): 303–306. doi: 10.1007/BF01647331.
    [42] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-06-13
  • 网络出版日期:  2025-07-04

目录

    /

    返回文章
    返回