实孔径雷达无超参数全变差正则化角超分辨方法

张永超 孙震宇 蔡晓春 毛德庆 张寅 黄钰林 杨建宇

张永超, 孙震宇, 蔡晓春, 等. 实孔径雷达无超参数全变差正则化角超分辨方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25011
引用本文: 张永超, 孙震宇, 蔡晓春, 等. 实孔径雷达无超参数全变差正则化角超分辨方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25011
ZHANG Yongchao, SUN Zhenyu, CAI Xiaochun, et al. A hyperparameter-free total variation regularization method for real aperture radar angular super-resolution[J]. Journal of Radars, in press. doi: 10.12000/JR25011
Citation: ZHANG Yongchao, SUN Zhenyu, CAI Xiaochun, et al. A hyperparameter-free total variation regularization method for real aperture radar angular super-resolution[J]. Journal of Radars, in press. doi: 10.12000/JR25011

实孔径雷达无超参数全变差正则化角超分辨方法

DOI: 10.12000/JR25011 CSTR: 32380.14.JR25011
基金项目: 国家自然科学基金(62471103, 62301131),四川省杰出青年科学基金(2023NSFSC1970),衢州市财政资助科研项目(2023D026, 2024D004)
详细信息
    作者简介:

    张永超,博士,副研究员,主要研究方向为雷达前视成像、雷达超分辨成像等

    孙震宇,硕士生,主要研究方向为雷达前视成像、雷达超分辨成像等

    蔡晓春,硕士生,主要研究方向为雷达前视成像、雷达超分辨成像等

    毛德庆,博士,副教授,主要研究方向为雷达前视成像、雷达超分辨成像等

    张 寅,博士,研究员,主要研究方向为信号处理和雷达成像等

    黄钰林,博士,教授,主要研究方向为雷达成像、检测与识别和机器学习等

    杨建宇,博士,教授,主要研究方向为合成孔径雷达和统计信号处理等

    通讯作者:

    张永超 yongchaozhang@uestc.edu.cn

  • 责任主编:朱岱寅 Corresponding Editor: ZHU Daiyin
  • 中图分类号: TN959.3

A Hyperparameter-free Total Variation Regularization Method for Real Aperture Radar Angular Super-resolution

Funds: The National Natural Science Foundation of China (62471103, 62301131), Natural Science Foundation for Distinguished Young Scholars of Sichuan, China (2023NSFSC1970), Municipal Government of Quzhou (2023D026, 2024D004)
More Information
  • 摘要: 受平台物理空间限制,实孔径雷达天线波束宽、角分辨率低下。基于稀疏重建的角超分辨方法,在正则化框架下引入目标稀疏先验约束并通过迭代优化求解对目标散射分布进行反演,是提升实孔径雷达角分辨率的重要途径。然而,现有稀疏重建方法仅考虑了强点目标的稀疏分布特性,未考虑扩展目标的轮廓信息,存在目标边缘恢复失真的问题;同时,现有稀疏重建方法对代价函数中引入的超参数敏感,实际应用中依赖人工精细调整,难以根据不同场景进行自适应选取。针对上述两个问题,该文提出一种无超参数全变差(TV)正则化角超分辨方法,首先建立一种均方根LASSO代价函数,用于表征扫描回波序列与目标散射分布的拟合残差,以及目标边缘梯度的稀疏约束,从而将目标轮廓重建问题重转化为TV正则化约束下的非平滑凸优化问题;然后基于协方差拟合准则,导出了无超参数TV正则化约束的解析表达;最后提出一种广义迭代重加权最小二乘(GIRLS)求解策略,实现了均方根LASSO非平滑凸优化问题的迭代优化求解。仿真和实测结果表明,该文提出的方法能够在改善分辨率的同时保持目标的轮廓信息,且无需人工调整超参数。

     

  • 图  1  扩展目标仿真结果(SNR=25 dB)

    Figure  1.  Simulation results for extended target (SNR=25 dB)

    图  2  各方法在不同信噪比下的MSE对比结果

    Figure  2.  MSE comparison of various methods under different SNRs

    图  3  各方法在不同信噪比下的平均尺度测量误差对比结果

    Figure  3.  Average scale measurement error comparison of various methods under different SNRs

    图  4  挂飞平台及雷达系统

    Figure  4.  Airborne platform and radar system

    图  5  机载雷达正前视成像几何示意图

    Figure  5.  Illustration of forward-looking imaging geometry for airborne radar

    图  6  机载雷达试验结果

    Figure  6.  Experimental results for airborne radar

    1  基于GIRLS的迭代优化求解方法流程

    1.   Flowchart of the GIRLS-based iterative optimization solving method

     1. 根据天线方向图向量h构造字典矩阵$ {\boldsymbol{B}} = {\boldsymbol{H}}{\nabla ^{ - 1}} $
     2. 根据式(24)构造加权矩阵$ {{\boldsymbol{W}}_{\text{s}}} $
     3. 初始化$ {\boldsymbol{\hat s}} = {\left( {{{\boldsymbol{H}}^{\text{H}}}{\boldsymbol{H}}} \right)^{ - 1}}{{\boldsymbol{H}}^{\text{H}}}{\boldsymbol{y}} $
     4. $ {\lambda _1} = \dfrac{1}{{{{\left\| {{\boldsymbol{y}} - {\boldsymbol{H\hat s}}} \right\|}_2}}} $
     5. 根据式(46)构造${{\boldsymbol{U}}_2}$
     6. $ {\boldsymbol{\hat s}} = {\lambda _1}{\left[ {{\lambda _1}{{\boldsymbol{H}}^{\text{H}}}{\boldsymbol{H}} + {M^{ - 1/2}}{\nabla ^{\text{H}}}{{\left( {{\boldsymbol{W}}_{\text{s}}^{1/2}} \right)}^{\text{H}}}{\boldsymbol{U}}_2^{\text{H}}{{\boldsymbol{U}}_2}{\boldsymbol{W}}_{\text{s}}^{1/2}\nabla } \right]^{ - 1}} $
     ${{\boldsymbol{H}}^{\text{H}}}{\boldsymbol{y}} $
     7. 重复迭代步骤4—步骤6,直至收敛
    下载: 导出CSV

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数 数值
    载频 10 GHz
    信号带宽 40 MHz
    信号时宽 2 μs
    PRF 500 Hz
    扫描速度 60 °/s
    作用距离 3 km
    波束宽度
    下载: 导出CSV

    表  2  机载雷达试验参数

    Table  2.   Experimental parameters for airborne radar

    参数 数值
    载频 30.75 GHz
    信号时宽 1 μs
    信号带宽 200 MHz
    PRF 4000 Hz
    俯仰角 ${20^ \circ }$
    波束宽度 ${4^ \circ }$
    扫描速度 $60\;{ ^ \circ }/{{\mathrm{s}}} $
    扫描范围 –30°~30°
    平台速度 37 m/s
    飞行高度 300 m
    下载: 导出CSV

    表  3  试验结果图像熵对比

    Table  3.   Comparison of image Entropy for experimental results

    超分辨方法 图像熵
    LASSO-TV方法 2.7645
    本文方法(SPICE-TV) 0.9721
    下载: 导出CSV
  • [1] STIMSON G W. Introduction to airborne radar[M]. 2nd ed. Mendham, USA: SciTech, 1998.
    [2] 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099.

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099.
    [3] 李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119.

    LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119.
    [4] 陈洪猛, 余继周, 张文杰, 等. 基于概率模型驱动的机载贝叶斯前视超分辨多目标成像方法[J]. 雷达学报, 2023, 12(6): 1125–1137. doi: 10.12000/JR23080.

    CHEN Hongmeng, YU Jizhou, ZHANG Wenjie, et al. Probability model-driven airborne Bayesian forward-looking super-resolution imaging for multitarget scenario[J]. Journal of Radars, 2023, 12(6): 1125–1137. doi: 10.12000/JR23080.
    [5] 丁义元, 杨建宇, 张卫华, 等. 改进实孔径雷达角分辨力的广义逆滤波方法[J]. 电子学报, 1993, 21(9): 15–19. doi: 10.3321/j.issn:0372-2112.1993.09.003.

    DING Yiyuan, YANG Jianyu, ZHANG Weihua, et al. Improvement of angular resolution of real aperture radar via generalized inverse filtering[J]. Acta Electronica Sinica, 1993, 21(9): 15–19. doi: 10.3321/j.issn:0372-2112.1993.09.003.
    [6] ZHANG Yongchao, ZHANG Yin, LI Wenchao, et al. Super-resolution surface mapping for scanning radar: Inverse filtering based on the fast iterative adaptive approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 127–144. doi: 10.1109/TGRS.2017.2743263.
    [7] 李悦丽, 梁甸农, 黄晓涛. 一种单脉冲雷达多通道解卷积前视成像方法[J]. 信号处理, 2007, 23(5): 699–703. doi: 10.3969/j.issn.1003-0530.2007.05.013.

    LI Yueli, LIANG Diannong, and HUANG Xiaotao. A multi-channel deconvolution based on forword-looking imaging method in monopulse radar[J]. Signal Processing, 2007, 23(5): 699–703. doi: 10.3969/j.issn.1003-0530.2007.05.013.
    [8] ZHANG Yongchao, LUO Jiawei, ZHANG Yongwei, et al. Resolution enhancement for large-scale real beam mapping based on adaptive low-rank approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5116921. doi: 10.1109/TGRS.2022.3202073.
    [9] MIGLIACCIO M and GAMBARDELLA A. Microwave radiometer spatial resolution enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1159–1169. doi: 10.1109/TGRS.2005.844099.
    [10] TUO Xingyu, ZHANG Yin, HUANG Yulin, et al. Fast sparse-TSVD super-resolution method of real aperture radar forward-looking imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6609–6620. doi: 10.1109/TGRS.2020.3027053.
    [11] GAMBARDELLA A and MIGLIACCIO M. On the superresolution of microwave scanning radiometer measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 796–800. doi: 10.1109/LGRS.2008.2006285.
    [12] ZHANG Qiping, ZHANG Yin, HUANG Yulin, et al. TV-sparse super-resolution method for radar forward-looking imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6534–6549. doi: 10.1109/TGRS.2020.2977719.
    [13] JOHNSTON P R and GULRAJANI R M. Selecting the corner in the L-curve approach to Tikhonov regularization[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293–1296. doi: 10.1109/10.867966.
    [14] GOLUB G H, HEATH M, and WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215–223. doi: 10.1080/00401706.1979.10489751.
    [15] STOICA P, BABU P, and LI Jian. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35–47. doi: 10.1109/TSP.2010.2086452.
    [16] MAO Deqing, YANG Jianyu, TUO Xing, et al. Angular superresolution of real aperture radar for target scale measurement using a generalized hybrid regularization approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5109314. doi: 10.1109/TGRS.2023.3315310.
    [17] TIBSHIRANI R. Regression shrinkage and selection via the LASSO: A retrospective[J]. Journal of the Royal Statistical Society, Series B, 1996, 58(1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x.
    [18] STOICA P, ZACHARIAH D, and LI Jian. Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation[J]. Digital Signal Processing, 2014, 33: 1–12. doi: 10.1016/j.dsp.2014.06.010.
    [19] TUO Xingyu, ZHANG Yin, HUANG Yulin, et al. A fast sparse azimuth super-resolution imaging method of real aperture radar based on iterative reweighted least squares with linear sketching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2928–2941. doi: 10.1109/JSTARS.2021.3061430.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-06-14
  • 网络出版日期:  2025-07-03

目录

    /

    返回文章
    返回