-
摘要: 本文针对合成孔径雷达(SAR)成像多模式间分辨率和测绘带宽等参数设计的矛盾问题,提出了一种基于子带搬移拼接的FDA-SAR成像方法,可满足多模式SAR成像的不同分辨率需求。利用频率分集阵(FDA)雷达的多子带并发模式,设计了一种带宽可调控的雷达波形。详细推导了任意带宽合成信号的时频域表达式,实现了阵元方位时延和频带不一致差异补偿。分析了合成信号频谱分布关系对成像性能的影响,采用非均匀子带搬移的频谱合成方式,降低了峰值旁瓣电平,改善了成像性能。该文方法能够同时实现大观测场景粗分辨率成像和重点区域场景精细成像的信号级融合处理,仿真验证了所提方法的有效性。Abstract: In this paper, a Frequency Diverse Array (FDA)-based Synthetic-Aperture Radar (FDA-SAR) imaging method based on sub-band shifting and splicing is proposed to address the conflicting issues associated with multi-mode SAR imaging in parameter design, such as those related to resolution and imaging swath. Using the multiple-sub-band concurrent mode of a FDA radar, a radar waveform with an adjustable bandwidth is designed. The time-frequency-domain expressions of the synthesized signals with arbitrary bandwidths are derived in detail, enabling compensation for the involved azimuth-time-delay differences and inconsistent frequency bands. The effect of the spectrum distribution of the synthesized signals on the imaging performance is analyzed, and spectrum synthesis based on non-uniform sub-band shifting is adopted, which reduces the peak sidelobe level and improves the imaging performance. Finally, simulations verify the effectiveness of the proposed method to simultaneously achieve signal-level fusion processing for coarse-resolution imaging of large observation scenes and fine-resolution imaging of key areas.
-
表 1 仿真参数设置
Table 1. Simulation parameters
参数 数值 参数 数值 发射阵元数M 5 平台高度H 5 km 参考载频f0 9 GHz 平台速度v 150 m/s 单个子带带宽B 150 MHz 方位向天线孔径 1 m 脉冲宽度Tp 2 μs 脉冲重复频率PRF 600 Hz -
[1] 陈祺. 星载多模式合成孔径雷达成像技术研究[D]. [博士论文], 国防科学技术大学, 2013.CHEN Qi. Research on the imaging technology of spaceborne multimode synthetic aperture radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2013. [2] CHEN Qi, YU Anxi, SUN Zaoyu, et al. A multi-mode space-borne SAR simulator based on SBRAS[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 4567–4570. doi: 10.1109/IGARSS.2012.6350453. [3] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301. [4] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–217. doi: 10.1109/RADAR.2006.1631800. [5] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 580–582. doi: 10.1109/RADAR.2006.1631858. [6] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023. [7] 王文钦, 张顺生. 频控阵雷达技术研究进展综述[J]. 雷达学报, 2022, 11(5): 830–849. doi: 10.12000/JR22141.WANG Wenqin and ZHANG Shunsheng. Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11(5): 830–849. doi: 10.12000/JR22141. [8] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Control and utilization of range-dependent beampattern with waveform diverse array radars[J]. Chinese Journal of Aeronautics, 2022, 35(12): 1–31. doi: 10.1016/j.cja.2022.05.004. [9] 王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235.WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics & Information Technology, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235. [10] XU Jingwei, ZHANG Yuhong, LIAO Guisheng, et al. Angle-dependent matched filtering for moving target indication with coherent FDA radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 3523–3536. doi: 10.1109/TAES.2024.3362935. [11] 张军, 许京伟, 王柯祎, 等. 相干FDA雷达收发联合多波束方法[J/OL]. 系统工程与电子技术, 2024: 1–11. http://kns.cnki.net/kcms/detail/11.2422.TN.20240930.1314.004.html.ZHANG Jun, XU Jingwei, WANG Keyi, et al. Multiple transceiver beamforming for coherent FDA radar[J/OL]. Systems Engineering and Electronics, 2024: 1–11. http://kns.cnki.net/kcms/detail/11.2422.TN.20240930.1314.004.html. [12] SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099. [13] XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680. [14] JAZI M B, KARBASI S M, and BABU P. Joint incremental-range, angle, and Doppler estimation in FDA-MIMO radars: 3-D decoupled atomic norm minimization[J]. IEEE Transactions on Radar Systems, 2024, 2: 583–593. doi: 10.1109/TRS.2024.3400978. [15] XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. doi: 10.1109/JSTSP.2016.2615269. [16] WANG Keyi, LIAO Guisheng, XU Jingwei, et al. Multi-scale moving target detection with FDA-MIMO radar[J]. Signal Processing, 2024, 216: 109301. doi: 10.1016/j.sigpro.2023.109301. [17] LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689. [18] LOU Mingyue, YANG Jianyu, LI Zhongyu, et al. Joint optimal and adaptive 2-D spatial filtering technique for FDA-MIMO SAR deception jamming separation and suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5238414. doi: 10.1109/TGRS.2022.3221786. [19] WANG Chenghao, XU Jingwei, LIAO Guisheng, et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 336–346. doi: 10.1109/JSTSP.2016.2605064. [20] ZHANG Mengdi, LIAO Guisheng, XU Jingwei, et al. High-resolution and wide-swath SAR imaging with sub-band frequency diverse array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 172–183. doi: 10.1109/TAES.2022.3187386. [21] NIU Shilin, ZHU Daiyin, JIN Guodong, et al. A novel transmitter-interpulse phase coding MIMO-radar for range ambiguity separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5238216. doi: 10.1109/TGRS.2022.3221406. [22] 巩朋成, 吴云韬. 基于ADMM改进的低截获FDA-MIMO雷达发射波束设计[J]. 通信学报, 2022, 43(4): 133–142. doi: 10.11959/j.issn.1000-436x.2022065.GONG Pengcheng and WU Yuntao. Improved transmit beamforming design based on ADMM for low probability of intercept of FDA-MIMO radar[J]. Journal on Communications, 2022, 43(4): 133–142. doi: 10.11959/j.issn.1000-436x.2022065. [23] 巩朋成, 王兆彬, 谭海明, 等. 杂波背景下基于交替方向乘子法的低截获频控阵MIMO雷达收发联合优化方法[J]. 电子与信息学报, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.GONG Pengcheng, WANG Zhaobin, TAN Haiming, et al. Joint design of the transmit and receive beamforming via alternating direction method of multipliers for LPI of frequency diverse array MIMO radar in the presence of clutter[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445. [24] SUN Hongbo, BRIGUI F, and LESTURGIE M. Analysis and comparison of MIMO radar waveforms[C]. International Radar Conference, Lille, France, 2014: 1–6. doi: 10.1109/RADAR.2014.7060251. [25] RABASTE O, SAVY L, CATTENOZ M, et al. Signal waveforms and range/angle coupling in coherent colocated MIMO radar[C]. International Conference on Radar, Adelaide, Australia, 2013: 157–162. doi: 10.1109/RADAR.2013.6651977. [26] ZENG Tao, LIU Luosi, and DING Zegang. Improved stepped-frequency SAR imaging algorithm with the range spectral-length extension strategy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(5): 1483–1494. doi: 10.1109/JSTARS.2012.2196681. [27] 龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8(6): 782–792. doi: 10.12000/JR19076.LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076. [28] YANG Jungang, HUANG Xiaotao, JIN Tian, et al. Synthetic aperture radar imaging using stepped frequency waveform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 2026–2036. doi: 10.1109/TGRS.2011.2170176. [29] 黄平平, 邓云凯, 徐伟, 等. 基于频域合成方法的多发多收SAR技术研究[J]. 电子与信息学报, 2011, 33(2): 401–406. doi: 10.3724/SP.J.1146.2009.01409.HUANG Pingping, DENG Yunkai, XU Wei, et al. The research of multiple-input and multiple-output SAR based on frequency synthetic[J]. Journal of Electronics & Information Technology, 2011, 33(2): 401–406. doi: 10.3724/SP.J.1146.2009.01409. [30] GU Wenkun, WANG Dangwei, MA Xiaoyan, et al. OFDM-MIMO radar time-domain synthetic bandwidth method[C]. 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 2015: 1–4. doi: 10.1109/ICSPCC.2015.7338799. [31] WANG Libao, XIE Chao, MENG Cangzhen, et al. Study on bandwidth synthesis method in the range for OFDM MIMO-SAR[C]. IET International Radar Conference, Hangzhou, China, 2015: 1–4. doi: 10.1049/cp.2015.1156. [32] LUO Xiulian, WANG R, DENG Yunkai, et al. Influences of channel errors and interference on the OFDM-MIMO SAR[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–5. doi: 10.1109/RADAR.2013.6585971. [33] 马喜乐, 董臻, 孙造宇. 步进正负调频信号实现MIMO SAR距离高分辨[J]. 信号处理, 2011, 27(5): 781–785. doi: 10.3969/j.issn.1003-0530.2011.05.023.MA Xile, DONG Zhen, and SUN Zaoyu. Generation of high range resolution in MIMO SAR via stepped frequency up-and-down chirp signal[J]. Signal Processing, 2011, 27(5): 781–785. doi: 10.3969/j.issn.1003-0530.2011.05.023. [34] 周高杯, 宋红军, 邓云凯. MIMO-SAR中虚拟孔径相位校正与子带合成方法研究[J]. 电子与信息学报, 2011, 33(2): 484–488. doi: 10.3724/SP.J.1146.2010.00435.ZHOU Gaobei, SONG Hongjun, and DENG Yunkai. Investigation of virtual aperture phase correction and sub band synthesis algorithms in MIMO-SAR[J]. Journal of Electronics & Information Technology, 2011, 33(2): 484–488. doi: 10.3724/SP.J.1146.2010.00435. [35] WANG Keyi, LIAO Guisheng, XU Jingwei, et al. General bandwidth synthesis approach for multiresolution SAR imaging with frequency diverse array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5222315. doi: 10.1109/TGRS.2024.3459597. [36] WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765. -