多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法

陈小龙 袁旺 杜晓林 王金豪 苏宁远 关键

陈小龙, 袁旺, 杜晓林, 等. 多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25004
引用本文: 陈小龙, 袁旺, 杜晓林, 等. 多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25004
CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multi-band multi-angle FMCW radar low-slow-small target detection dataset (LSS-FMCWR-2.0) and feature fusion classification methods[J]. Journal of Radars, in press. doi: 10.12000/JR25004
Citation: CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multi-band multi-angle FMCW radar low-slow-small target detection dataset (LSS-FMCWR-2.0) and feature fusion classification methods[J]. Journal of Radars, in press. doi: 10.12000/JR25004

多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法

DOI: 10.12000/JR25004 CSTR: 32380.14.JR25004
基金项目: 国家自然科学基金(62222120),国家重点研发计划(2024YFB3909804),山东省自然科学基金(ZR2024JQ003)
详细信息
    作者简介:

    陈小龙,博士,教授,主要研究方向为雷达低慢小目标检测、海杂波抑制、雷达智能信息处理等

    袁 旺,硕士生,主要研究方向为高分辨雷达无人机等低慢小目标多特征融合识别

    杜晓林,博士,副教授,硕士生导师,主要研究方向为雷达信号处理、波形设计等

    王金豪,硕士生,主要研究方向为深度学习时频分析

    苏宁远,博士,讲师,主要研究方向为智能雷达信号处理、目标检测

    关 键,博士,教授,博士生导师,主要研究方向为雷达目标检测与跟踪、侦查图像处理和信息融合

    通讯作者:

    陈小龙 cxlcxl1209@163.com

    杜晓林 duxiaolin168@vip.163.com

  • 责任主编:罗迎 Corresponding Editor: LUO Ying
  • 中图分类号: TN957.51

Multi-band multi-angle FMCW Radar low-slow-small Target Detection Dataset (LSS-FMCWR-2.0) and Feature Fusion Classification Methods

Funds: The National Natural Science Foundation of China (62222120), National Key Research and Development Program of China (2024YFB3909804), Shandong Natural Science Foundation (ZR2024JQ003)
More Information
  • 摘要: 该文针对飞鸟和无人机等低慢小目标精细化特征提取和分类问题,提出了一种多波段多角度特征融合分类方法。首先分别基于K波段和L波段调频连续波雷达从多个角度采集了5种类型旋翼无人机和飞鸟模型数据,构建低慢小探测数据集。其次,为了获取L波段目标信号的周期性振动特征,利用经验模态分解提取L波段信号中高频特征,抑制噪声影响;对K波段回波信号进行短时傅里叶变换,获得多角度高分辨微动特征。然后,设计了一种多波段多角度特征融合网络模型(MMFFNet),包含改进的卷积长短期记忆网络时序特征提取模块、注意力融合模块和多尺度特征融合模块,通过多波段多角度特征的融合提高了目标分类的准确率。通过实测数据集验证表明,与使用单一雷达特征分类方法相比,在高信噪比为5 dB和低信噪比为–3 dB条件下所提方法对7种类型的低慢小目标的正确分类准确率分别提高了3.1%和12.3%。

     

  • 图  1  双波段雷达采集数据模型

    Figure  1.  Dual-band radar acquisition data model

    图  2  雷达采集位置及场景

    Figure  2.  The radar acquisition location and scene

    图  3  各类型旋翼无人机和仿真飞鸟

    Figure  3.  Various types of rotorcraft drones and simulated birds

    图  4  多波段多角度雷达数据集

    Figure  4.  Multi-band multi-angle radar dataset

    图  5  雷达信号处理流程

    Figure  5.  The flow chart of radar signal processing

    图  6  多波段多角度特征融合网络框架

    Figure  6.  Multi band and multi angle feature fusion network framework

    图  7  结合CBAM的ConvLSTM结构图

    Figure  7.  Structure of ConvLSTM combined with CBAM

    图  8  注意力融合模块结构图

    Figure  8.  Structure of the attention fusion module

    图  9  AFF特征融合模块结构图

    Figure  9.  AFF feature fusion module structure diagram

    图  10  直升机类型的网络输入数据图(07-2023.7.31-1.0-100-31-L (1))

    Figure  10.  Network input data diagram of helicopter type (07-2023.7.31-1.0-100-31-L (1))

    图  11  各类型无人机数据处理图

    Figure  11.  Data processing diagram for each type of UAV

    图  12  悟2信号信号处理

    Figure  12.  The Wu2 signal processing

    图  13  各类型无人机L波段信号的IMF1分量图

    Figure  13.  The IMF1 component diagram of various types of UAV L-band signals

    图  14  悟2无人机不同角度K波段信号的STFT图(02-2023.11.15-60-0.3-100-8-K (1))

    Figure  14.  The STFT diagram of K-band signals from different angles of drones(02-2023.11.15-60-0.3-100-8-K (1))

    图  15  所提网络的训练准确率曲线

    Figure  15.  The training accuracy curve of the proposed network

    图  16  所提网络的分类混淆矩阵

    Figure  16.  The classification confusion matrix of the proposed network

    图  17  所提网络的T-SNE可视化

    Figure  17.  T-SNE visualization of the proposed network

    图  18  所提网络和单一特征网络在不同信噪比下的分类准确率

    Figure  18.  The Classification accuracies of the proposed network and the single-feature network at different signal-to-noise ratios

    图  19  各种分类网络和所提网络的训练准确率曲线

    Figure  19.  The training accuracy curve of various classification networks and proposed networks

    表  1  各类型无人机的数据参数

    Table  1.   Data parameters for each type of UAV

    目标类型 尺寸大小(mm)
    (长×宽×高)
    高度范围
    (m)
    L波段
    RCS(dBsm)
    K波段
    RCS(dBsm)
    大疆M350 810×670×430 1~3 –23~–13 –13~–5
    大疆悟2 605×588×315 1~3 –30~–23 –20~–13
    大疆御2 322×242×84 1~3 –40~–30 –30~–20
    六翼飞行器 800~1200 1~3 –13~–5 –5~3
    仿真飞鸟 500~1500 1~2 <–40 <–30
    下载: 导出CSV

    表  2  L波段和K波段调频连续波雷达参数设置

    Table  2.   L-band and K-band FM continuous wave radar parameter settings

    参数K波段雷达L波段雷达
    工作频率(GHz)23.70.145
    Chirp重复周期(ms)0.31.024
    调制带宽(MHz)100100
    采样频率(kHz)500500
    下载: 导出CSV

    表  3  低慢小目标采集参数设置

    Table  3.   Low-slow-small target acquisition parameter settings

    无人机类型及编号 调制带宽(MHz) 角度(°) 调制周期(ms) 目标距离(m) 雷达波段(K/L)
    大疆M350(01) 100 0 0.300+1.024 8 K+L
    60 0.300+1.024 8 K+L
    90 0.300+1.024 8 K+L
    120 0.300+1.024 8 K+L
    180 0.300+1.024 8 K+L
    大疆悟2(02) 100 0 0.300+1.024 8 K+L
    60 0.300+1.024 8 K+L
    90 0.300+1.024 8 K+L
    120 0.300+1.024 8 K+L
    180 0.300+1.024 8 K+L
    大疆御2(03) 100 0 0.300+1.024 6 K+L
    60 0.300+1.024 6 K+L
    90 0.300+1.024 6 K+L
    120 0.300+1.024 6 K+L
    180 0.300+1.024 6 K+L
    六翼飞行器(04) 100 0 0.300+1.024 8 K+L
    60 0.300+1.024 8 K+L
    90 0.300+1.024 8 K+L
    120 0.300+1.024 8 K+L
    180 0.300+1.024 8 K+L
    仿真飞鸟(05) 100 0 0.300+1.024 2 K+L
    200 0 0.3 2 K
    AC311直升机(06) 100 0 0.300 32 L+K
    500 0 4.096 30 K
    1000 0 4.096 32 K
    下载: 导出CSV

    表  4  构建数据集的样本数

    Table  4.   The number of samples to build the dataset

    无人机类型 训练集 验证集 测试集
    大疆悟2 3506 328 316
    固定翼 1126 96 73
    大疆御2 1833 186 175
    六翼飞行器 4820 462 428
    大疆M350 3192 326 306
    AC311直升机 1326 135 126
    仿真飞鸟 1250 124 120
    下载: 导出CSV

    表  5  多波段多角度特征融合网络超参数

    Table  5.   Hyperparameters of multi-band multi-angle feature fusion network

    优化器AdamW
    瞬时函数Cross Entropy Loss
    训练次数100
    Dropout0.2
    初始学习率0.001
    批处理大小4
    下载: 导出CSV

    表  6  ConvLSTM改进前后对分类的影响

    Table  6.   Effect on classification before and after ConvLSTM improvement

    特征提取结构分类准确率(%)
    所提方法(ConvLSTM)98.2
    所提方法(ConvLSTM+CBAM)99.1
    所提方法(CBAM)98.6
    所提方法(SEAttention)97.6
    下载: 导出CSV

    表  7  在SNR=5 dB噪声下不同网络的性能比较

    Table  7.   Performance comparison of different networks at SNR=5 dB noise

    模型数据集ACCMAPMF1KCFLOPs(G)
    AlexNet数据集10.9330.9310.9260.9230.309
    ResNet50数据集10.9460.9430.9370.9294.132
    Swin-transformer数据集10.9540.9480.9410.93723.55
    ConvNext数据集10.9430.9380.9330.93115.354
    所提网络_单角度数据集10.9560.9530.9480.94230.129
    MMFFNet数据集1+数据集20.9870.9760.9650.96130.129
    下载: 导出CSV
  • [1] AJAKWE S O, IHEKORONYE V U, KIM D S, et al. DRONET: Multi-tasking framework for real-time industrial facility aerial surveillance and safety[J]. Drones, 2022, 6(2): 46. doi: 10.3390/drones6020046.
    [2] 陈小龙, 南钊, 张海, 等. 飞鸟与旋翼无人机雷达微多普勒测量实验研究[J]. 电波科学学报, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192.

    CHEN Xiaolong, NAN Zhao, ZHANG Hai, et al. Experimental research on radar micro-Doppler of flying bird and rotor UAV[J]. Chinese Journal of Radio Science, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192.
    [3] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068.

    CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068.
    [4] YAN Jun, HU Huiping, GONG Jiangkun, et al. Exploring radar micro-Doppler signatures for recognition of drone types[J]. Drones, 2023, 7(4): 280. doi: 10.3390/drones7040280.
    [5] WU Jing, AI Xiaofeng, ZHENG Yuqing, et al. Micro-Doppler curve extraction based on reassociation Viterbi algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4295–4309. doi: 10.1109/TAES.2024.3373719.
    [6] MA Xinyue, OH B S, SUN Lei, et al. EMD-based entropy features for micro-Doppler mini-UAV classification[C]. 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 1295–1300. doi: 10.1109/ICPR.2018.8546180.
    [7] ZHAO Yichao and SU Yi. The extraction of micro-Doppler signal with EMD algorithm for radar-based small UAVs’ detection[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(3): 929–940. doi: 10.1109/TIM.2019.2905751.
    [8] LI Ruoyu and HE D. Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(4): 990–1001. doi: 10.1109/TIM.2011.2179819.
    [9] OH B S, GUO Xin, WAN Fangyuan, et al. An EMD-based micro-Doppler signature analysis for mini-UAV blade flash reconstruction[C]. 2017 22nd International Conference on Digital Signal Processing (DSP), London, UK, 2017. 1–5. doi: 10.1109/ICDSP.2017.8096105.
    [10] PATEL J S, FIORANELLI F, and ANDERSON D. Review of radar classification and RCS characterisation techniques for small UAVs or drones[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 911–919. doi: 10.1049/iet-rsn.2018.0020.
    [11] LEONARDI M, LIGRESTI G, and PIRACCI E. Drones classification by the use of a multifunctional radar and micro-Doppler analysis[J]. Drones, 2022, 6(5): 124. doi: 10.3390/drones6050124.
    [12] CHEN Xu, MA Chunguang, ZHAO Chaofan, et al. UAV classification based on deep learning fusion of multidimensional UAV micro-Doppler image features[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3503205. doi: 10.1109/LGRS.2024.3371171.
    [13] KUMAWAT H C, CHAKRABORTY M, BAZIL RAJ A A, et al. DIAT-μSAT: Small aerial targets’ micro-Doppler signatures and their classification using CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6004005. doi: 10.1109/LGRS.2021.3102039.
    [14] WANG Chenxing, TIAN Jiangmin, CAO Jinwen, et al. Deep learning-based UAV detection in pulse-Doppler radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105612. doi: 10.1109/TGRS.2021.3104907.
    [15] CHEN Tao, GAO Shuncheng, ZHENG Shilian, et al. EMD and VMD empowered deep learning for radio modulation recognition[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(1): 43–57. doi: 10.1109/TCCN.2022.3218694.
    [16] ZHU Jianping, CHEN Haiquan, and YE Wenbin. A hybrid CNN-LSTM network for the classification of human activities based on micro-Doppler radar[J]. IEEE Access, 2020, 8: 24713–24720. doi: 10.1109/ACCESS.2020.2971064.
    [17] SUN Yingxiang, ABEYWICKRAMA S, JAYASINGHE L, et al. Micro-Doppler signature-based detection, classification, and localization of small UAV with long short-term memory neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6285–6300. doi: 10.1109/TGRS.2020.3028654.
    [18] CHEN Xiaolong, ZHANG Hai, SONG Jie, et al. Micro-motion classification of flying bird and rotor drones via data augmentation and modified multi-scale CNN[J]. Remote Sensing, 2022, 14(5): 1107. doi: 10.3309/rs14051107.
    [19] FU Rui, AL-ABSI M A, KIM K H, et al. Deep learning-based drone classification using radar cross section signatures at mmWave frequencies[J]. IEEE Access, 2021, 9: 161431–161444. doi: 10.1109/ACCESS.2021.3115805.
    [20] MO Yongguang, HUANG Jianjun, and QIAN Gongbin. Deep learning approach to UAV detection and classification by using compressively sensed RF signal[J]. Sensors, 2022, 22(8): 3072. doi: 10.3390/s22083072.
    [21] CHEN Xiaolong, SU Ningyuan, HUANG Yong, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21(7): 9099–9111. doi: 10.1109/JSEN.2021.3054744.
    [22] 陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)及高分辨微动特征提取方法[J]. 雷达学报(中英文), 2024, 13(3): 539–553. doi: 10.12000/JR23142.

    CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multiband FMCW radar LSS-target detection dataset (LSS-FMCWR-1.0) and high-resolution micromotion feature extraction method[J]. Journal of Radars, 2024, 13(3): 539–553. doi: 10.12000/JR23142.
    [23] 陈小龙, 饶桂林, 关键, 等. 被动雷达低慢小探测数据集(LSS-PR-1.0)及多域特征提取和分析方法[J]. 雷达学报(中英文), 2025, 14(2): 249–268. doi: 10.12000/JR24145.

    CHEN Xiaolong, RAO Guilin, GUAN Jian, et al. Passive radar low slow small detection dataset (LSS-PR-1.0) and multi-domain feature extraction and analysis methods[J]. Journal of Radars, 2025, 14(2): 249–268. doi: 10.12000/JR24145.
    [24] 章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7(5): 557–564. doi: 10.12000/JR18061.

    ZHANG Pengfei, LI Gang, HUO Chaoying, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7(5): 557–564. doi: 10.12000/JR18061. doi: 10.12000/JR18061.
    [25] OH B S, GUO Xin, WAN Fangyuan, et al. Micro-Doppler mini-UAV classification using empirical-mode decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 227–231. doi: 10.1109/LGRS.2017.2781711.
    [26] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [27] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [28] DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3559–3568. doi: 10.1109/WACV48630.2021.00360.
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-04-29

目录

    /

    返回文章
    返回