基于微波散射机理的SAR作物和土壤参数反演研究进展

吴尚蓉 赵荣坤 曹红 查燕 余强毅 吴文斌 杨鹏

洪文, 林赟, 谭维贤, 王彦平, 向茂生. 地球同步轨道圆迹SAR研究[J]. 雷达学报, 2015, 4(3): 241-253. doi: 10.12000/JR15062
引用本文: 吴尚蓉, 赵荣坤, 曹红, 等. 基于微波散射机理的SAR作物和土壤参数反演研究进展[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24260
Hong Wen, Lin Yun, Tan Wei-xian, Wang Yan-ping, Xiang Mao-sheng. Study on Geosynchronous Circular SAR[J]. Journal of Radars, 2015, 4(3): 241-253. doi: 10.12000/JR15062
Citation: WU Shangrong, ZHAO Rongkun, CAO Hong, et al. Research progress on SAR inversion of crop and soil parameters based on microwave scattering theory[J]. Journal of Radars, in press. doi: 10.12000/JR24260

基于微波散射机理的SAR作物和土壤参数反演研究进展

DOI: 10.12000/JR24260 CSTR: 32380.14.JR24260
基金项目: 国家自然科学基金(42271374),中国农业科学院青年创新专项(Y2023QC18)
详细信息
    作者简介:

    吴尚蓉,博士,副研究员,主要研究方向为农情遥感、作物遥感、作物参数SAR反演、同化估产等

    赵荣坤,博士生,主要研究方向为作物参数SAR反演、农情遥感等

    曹 红,博士生,主要研究方向为遥感估产、农情遥感等

    查 燕,博士,副研究员,主要研究方向为农业资源环境遥感等

    余强毅,博士,研究员,主要研究方向为农业遥感、智慧农业等

    吴文斌,博士,研究员,主要研究方向为农业遥感、智慧农业等

    杨 鹏,博士,研究员,主要研究方向为农业遥感机理与方法、智慧农业等

    通讯作者:

    吴尚蓉, wushangrong@caas.cn

  • 责任主编:张红 Corresponding Editor: ZHANG Hong
  • 中图分类号: P237

Research Progress on SAR Inversion of Crop and Soil Parameters Based on Microwave Scattering Theory

Funds: The National Natural Science Foundation of China (42271374), Youth Innovation Program of the Chinese Academy of Agricultural Sciences (Y2023QC18)
More Information
  • 摘要: 作物和土壤参数是表征作物生长状态、监测作物长势的重要基础。雷达遥感具有全天时、全天候、不受气象条件影响的观测能力,微波的穿透能力也对作物覆盖下土壤参数变化具有较强敏感性,在作物土壤参数反演中极具潜力。该文围绕微波散射理论下的作物土壤参数反演模型展开研究和综述。首先回顾了微波散射模型从理论模型发展为半经验模型的历程,明晰模型理论演变趋势与方法改进方向。然后,详细介绍了基于微波散射机理的作物参数、土壤参数以及作物土壤参数耦合的反演方法。最后,阐明模型不足,结合当下技术发展特点明确了未来发展的重点方向,以期为后续研究提供新思路。

     

  • 图  1  作物参数反演模型发展趋势

    Figure  1.  Development trends of crop parameter inversion models

    图  2  土壤参数反演模型发展趋势

    Figure  2.  Development trends of soil parameter inversion models

    图  3  作物土壤参数反演模型示意图

    Figure  3.  Schematic diagram of crop and soil parameter inversion model

    表  1  WCM参数设置

    Table  1.   WCM Parameter setting

    作物 V1 V2 参考文献
    黄秋葵 LAI BM [81]
    芸豆 LAI LWAI [82]
    水稻 LAI LAI [80]
    水稻 BM BM [85]
    玉米 1 LAI [83]
    小麦 LAI IF [86,87]
    大豆、玉米 LAIE1 LAIE2 [84,88]
    小麦、玉米等 LAIE1 BME2 [89,90]
    注:叶面积指数(LAI),生物量(BM),叶片含水量(Leaf Water Area Index, LWAI),作物冠层垂直不均匀性描述符(Interaction Fctor, IF),E1E2为待确定参数。
    下载: 导出CSV
  • [1] 吴素霞, 毛任钊, 李红军, 等. 中国农作物长势遥感监测研究综述[J]. 中国农学通报, 2005, 21(3): 319–322,345. doi: 10.3969/j.issn.1000-6850.2005.03.091.

    WU Suxia, MAO Renzhao, LI Hongjun, et al. Review of crop condition monitoring using remote sensing in China[J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 319–322,345. doi: 10.3969/j.issn.1000-6850.2005.03.091.
    [2] 赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277–293. doi: 10.6041/j.issn.1000-1298.2014.12.041.

    ZHAO Chunjiang. Advances of research and application in remote sensing for agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 277–293. doi: 10.6041/j.issn.1000-1298.2014.12.041.
    [3] 程志强, 蒙继华. 作物单产估算模型研究进展与展望[J]. 中国生态农业学报, 2015, 23(4): 402–415. doi: 10.13930/j.cnki.cjea.141218.

    CHENG Zhiqiang and MENG Jihua. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402–415. doi: 10.13930/j.cnki.cjea.141218.
    [4] 王福民, 李嘉乐, 段四波, 等. 农业遥感技术发展新需求与新挑战[J]. 中国农业信息, 2023, 35(6): 9–21. doi: 10.12105/j.issn.1672-0423.20230602.

    WANG Fumin, LI Jiale, DUAN Sibo, et al. New demands and challenges for the development of agricultural remote sensing[J]. China Agricultural Information, 2023, 35(6): 9–21. doi: 10.12105/j.issn.1672-0423.20230602.
    [5] 赵龙才, 李粉玲, 常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报, 2023, 54(2): 1–19. doi: 10.6041/j.issn.1000-1298.2023.02.001.

    ZHAO Longcai, LI Fenling, and CHANG Qingrui. Review on crop type identification and yield forecasting using remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 1–19. doi: 10.6041/j.issn.1000-1298.2023.02.001.
    [6] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748–767. doi: 10.11834/jrs.20166214.

    CHEN Zhongxin, REN Jianqiang, TANG Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748–767. doi: 10.11834/jrs.20166214.
    [7] 尹高飞, 车伟, 于慧男. 植被生物物理参数的光学遥感反演方法综述[J]. 测绘, 2023, 46(5): 195–198. doi: 10.3969/j.issn.1674-5019.2023.05.001.

    YIN Gaofei, CHE Wei, and YU Huinan. Review of optical remote sensing retrieval of vegetation biophysical parameters[J]. Surveying and Mapping, 2023, 46(5): 195–198. doi: 10.3969/j.issn.1674-5019.2023.05.001.
    [8] 何泽, 李世华. 水稻雷达遥感监测研究进展[J]. 遥感学报, 2023, 27(10): 2363–2382. doi: 10.11834/jrs.20221701.

    HE Ze and LI Shihua. Research progress on radar remote sensing for rice growth monitoring[J]. National Remote Sensing Bulletin, 2023, 27(10): 2363–2382. doi: 10.11834/jrs.20221701.
    [9] 洪玉娇, 张硕, 李俐. 基于合成孔径雷达数据的农作物长势监测研究进展[J]. 智慧农业(中英文), 2024, 6(1): 46–62. doi: 10.12133/j.smartag.SA202308019.

    HONG Yujiao, ZHANG Shuo, and LI Li. Research progresses of crop growth monitoring based on synthetic aperture radar data[J]. Smart Agriculture, 2024, 6(1): 46–62. doi: 10.12133/j.smartag.SA202308019.
    [10] 李平湘, 赵伶俐, 任烨仙. 合成孔径雷达在农业监测中的应用和展望[J]. 地理空间信息, 2017, 15(3): 1–4. doi: 10.3969/j.issn.1672-4623.2017.03.001.

    LI Pingxiang, ZHAO Lingli, and REN Yexian. Outlook and application of the synthetic aperture radar in agriculture monitoring[J]. Geospatial Information, 2017, 15(3): 1–4. doi: 10.3969/j.issn.1672-4623.2017.03.001.
    [11] 张王菲, 陈尔学, 李增元, 等. 雷达遥感农业应用综述[J]. 雷达学报, 2020, 9(3): 444–461. doi: 10.12000/JR20051.

    ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Review of applications of radar remote sensing in agriculture[J]. Journal of Radars, 2020, 9(3): 444–461. doi: 10.12000/JR20051.
    [12] 张亚红, 吴娇娇, 胥喆, 等. 合成孔径雷达在农作物长势监测中的应用[J]. 安徽农业科学, 2016, 44(27): 220–222,244. doi: 10.13989/j.cnki.0517-6611.2016.27.074.

    ZHANG Yahong, WU Jiaojiao, XU Zhe, et al. Application of synthetic aperture radar in crop growth monitoring[J]. Journal of Anhui Agricultural Sciences, 2016, 44(27): 220–222,244. doi: 10.13989/j.cnki.0517-6611.2016.27.074.
    [13] 周兴霞, 王颖洁, 杨攀. 基于光学与雷达遥感影像协作的多云雾区域农作物信息提取研究[J]. 遥感技术与应用, 2024, 39(2): 362–372. doi: 10.11873/j.issn.1004-0323.2024.2.0362.

    ZHOU Xingxia, WANG Yingjie, and YANG Pan. Extraction of crop information in cloudy areas based on optical and radar remote sensing images[J]. Remote Sensing Technology and Application, 2024, 39(2): 362–372. doi: 10.11873/j.issn.1004-0323.2024.2.0362.
    [14] 李俐, 王荻, 潘彩霞, 等. 土壤水分反演中的主动微波散射模型[J]. 国土资源遥感, 2016, 28(4): 1–9. doi: 10.6046/gtzyyg.2016.04.01.

    LI Li, WANG Di, PAN Caixai, et al. Active microwave scattering models used in soil moisture retrieval[J]. Remote Sensing for Land & Resources, 2016, 28(4): 1–9. doi: 10.6046/gtzyyg.2016.04.01.
    [15] 李俐, 王荻, 王鹏新, 等. 合成孔径雷达土壤水分反演研究进展[J]. 资源科学, 2015, 37(10): 1929–1940.

    LI Li, WANG Di, WANG Pengxin, et al. Progress on monitoring soil moisture using SAR data[J]. Resources Science, 2015, 37(10): 1929–1940.
    [16] 覃湘栋, 庞治国, 江威, 等. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10): 1728–1742. doi: 10.12082/dqxxkx.2021.210104.

    QIN Xiangdong, PANG Zhiguo, JIANG Wei, et al. Progress and development trend of soil moisture microwave remote sensing retrieval method[J]. Journal of Geo-Information Science, 2021, 23(10): 1728–1742. doi: 10.12082/dqxxkx.2021.210104.
    [17] 徐嘉昕, 李璇, 朱永超, 等. 地表土壤水分的卫星遥感反演方法研究进展[J]. 气象科技进展, 2019, 9(2): 17–23. doi: 10.3969/j.issn.2095-1973.2019.02.003.

    XU Jiaxin, LI Xuan, ZHU Yongchao, et al. Progress of the methods of remote sensing monitoring the soil moisture[J]. Advances in Meteorological Science and Technology, 2019, 9(2): 17–23. doi: 10.3969/j.issn.2095-1973.2019.02.003.
    [18] 张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011, 34(4): 671–678. doi: 10.13826/j.cnki.cn65-1103/x.2011.04.015.

    ZHANG Ying, DING Jianli, and ZHOU Peng. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions[J]. Arid Land Geography, 2011, 34(4): 671–678. doi: 10.13826/j.cnki.cn65-1103/x.2011.04.015.
    [19] 赵少华, 秦其明, 沈心一, 等. 微波遥感技术监测土壤湿度的研究[J]. 微波学报, 2010, 26(2): 90–96. doi: 10.14183/j.cnki.1005-6122.2010.02.023.

    ZHAO Shaohua, QIN Qiming, SHEN Xinyi, et al. Review of microwave remote sensing on soil moisture monitoring[J]. Journal of Microwaves, 2010, 26(2): 90–96. doi: 10.14183/j.cnki.1005-6122.2010.02.023.
    [20] 钟雪, 杨明龙, 唐秀娟, 等. 土壤水分卫星遥感反演方法研究进展[J]. 干旱气象, 2024, 42(4): 637–648. doi: 10.11755/j.issn.1006-7639(2024)-04-0637.

    ZHONG Xue, YANG Minglong, TANG Xiujuan, et al. Progress of satellite remote sensing inversion method for soil moisture[J]. Journal of Arid Meteorology, 2024, 42(4): 637–648. doi: 10.11755/j.issn.1006-7639(2024)-04-0637.
    [21] 朱逸青, 吴尚蓉, 王迪. 土壤水分雷达遥感反演研究[J]. 中国农业信息, 2024, 36(3): 45–62. doi: 10.12105/j.issn.1672-0423.20240304.

    ZHU Yiqing, WU Shangrong, and WANG Di. Soil moisture retrieval by radar remote sensing[J]. China Agricultural Information, 2024, 36(3): 45–62. doi: 10.12105/j.issn.1672-0423.20240304.
    [22] 许涛, 廖静娟, 沈国状, 等. 植被微波散射模型研究综述[J]. 遥感信息, 2015, 30(5): 3–13. doi: 10.3969/j.issn.1000-3177.2015.05.001.

    XU Tao, LIAO Jingjuan, SHEN Guozhuang, et al. Progresses on microwave scattering model of vegetation[J]. Remote Sensing Information, 2015, 30(5): 3–13. doi: 10.3969/j.issn.1000-3177.2015.05.001.
    [23] BOUMAN B A M. Crop parameter estimation from ground-based X-band (3-cm wave) radar backscattering data[J]. Remote Sensing of Environment, 1991, 37(3): 193–205. doi: 10.1016/0034-4257(91)90081-G.
    [24] 张晓倩, 郭琳, 马尚杰, 等. 利用时序合成孔径雷达数据监测水稻叶面积指数[J]. 农业工程学报, 2014, 30(13): 185–193. doi: 10.3969/j.issn.1002-6819.2014.13.023.

    ZHANG Xiaoqian, GUO Lin, MA Shangjie, et al. Monitoring rice leaf area index using time-series SAR data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 185–193. doi: 10.3969/j.issn.1002-6819.2014.13.023.
    [25] KARTHIKEYAN L, PAN Ming, WANDERS N, et al. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[J]. Advances in Water Resources, 2017, 109: 106–120. doi: 10.1016/j.advwatres.2017.09.006.
    [26] 张琳琳, 雷志斌, 王莉萍, 等. 基于高分三号卫星合成孔径雷达数据的农田土壤水分反演[J]. 浙江大学学报: 农业与生命科学版, 2024, 50(2): 209–220. doi: 10.3785/j.issn.1008-9209.2023.12.183.

    ZHANG Linlin, LEI Zhibin, WANG Liping, et al. Retrieval of soil moisture based on Gaofen-3 (GF-3) satellite synthetic aperture radar data over agricultural fields[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2024, 50(2): 209–220. doi: 10.3785/j.issn.1008-9209.2023.12.183.
    [27] ATTEMA E P W and ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357–364. doi: 10.1029/RS013i002p00357.
    [28] ULABY F T, ALLEN C T, EGER III G, et al. Relating the microwave backscattering coefficient to leaf area index[J]. Remote Sensing of Environment, 1984, 14(1/3): 113–133. doi: 10.1016/0034-4257(84)90010-5.
    [29] 陶亮亮, 李京, 蒋金豹, 等. 利用RADARSAT-2雷达数据与改进的水云模型反演冬小麦叶面积指数[J]. 麦类作物学报, 2016, 36(2): 236–242. doi: 10.7606/j.issn.1009-1041.2016.02.15.

    TAO Liangliang, LI Jing, JIANG Jinbao, et al. Leaf area index inversion of winter wheat using RADARSAT-2 data and modified water-cloud model[J]. Journal of Triticeae Crops, 2016, 36(2): 236–242. doi: 10.7606/j.issn.1009-1041.2016.02.15.
    [30] KARAM M A and FUNG A K. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation[J]. International Journal of Remote Sensing, 1988, 9(6): 1109–1134. doi: 10.1080/01431168808954918.
    [31] ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7): 1223–1253. doi: 10.1080/01431169008955090.
    [32] KARAM M A, FUNG A K, LANG R H, et al. A microwave scattering model for layered vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 767–784. doi: 10.1109/36.158872.
    [33] KARAM M A, AMAR F, FUNG A K, et al. A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory[J]. Remote Sensing of Environment, 1995, 53(1): 16–30. doi: 10.1016/0034-4257(95)00048-6.
    [34] DE ROO R D, DU Yang, ULABY F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 864–872. doi: 10.1109/36.917912.
    [35] WANG Cuizhen, WU Jiaping, ZHANG Yuan, et al. Characterizing L-band scattering of paddy rice in southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 988–998. doi: 10.1109/TGRS.2008.2008309.
    [36] LIU Yu, CHEN Kunshan, XU Peng, et al. Modeling and characteristics of microwave backscattering from rice canopy over growth stages[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6757–6770. doi: 10.1109/TGRS.2016.2590439.
    [37] WU Shangrong, YANG Peng, REN Jianqiang, et al. Winter wheat LAI inversion considering morphological characteristics at different growth stages coupled with microwave scattering model and canopy simulation model[J]. Remote Sensing of Environment, 2020, 240: 111681. doi: 10.1016/j.rse.2020.111681.
    [38] VALENZUELA G. Depolarization of EM waves by slightly rough surfaces[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(4): 552–557. doi: 10.1109/TAP.1967.1138962.
    [39] SHEN J and MARADUDIN A A. Multiple scattering of waves from random rough surfaces[J]. Physical Review B, 1980, 22(9): 4234–4240. doi: 10.1103/PhysRevB.22.4234.
    [40] BAHAR E. Full-wave solutions for the depolarization of the scattered radiation fields by rough surfaces of arbitrary slope[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(3): 443–454. doi: 10.1109/TAP.1981.1142604.
    [41] MICHAELI A. Equivalent edge currents for arbitrary aspects of observation[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3): 252–258. doi: 10.1109/TAP.1984.1143303.
    [42] LI Xiaowen and STRAHLER A H. Geometric-optical modeling of a conifer forest canopy[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(5): 705–721. doi: 10.1109/TGRS.1985.289389.
    [43] MILDER D M. An improved formalism for wave scattering from rough surfaces[J]. The Journal of the Acoustical Society of America, 1991, 89(2): 529–541. doi: 10.1121/1.400377.
    [44] FUNG A K, LI Zongqian, and CHEN Kunshan. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356–369. doi: 10.1109/36.134085.
    [45] HSIEH C Y, FUNG A K, NESTI G, et al. A further study of the IEM surface scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 901–909. doi: 10.1109/36.602532.
    [46] ÁLVAREZ-PÉREZ J L. An extension of the IEM/IEMM surface scattering model[J]. Waves in Random Media, 2001, 11(3): 307–329. doi: 10.1088/0959-7174/11/3/308.
    [47] CHEN Kunshan, WU T D, TSANG L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 90–101. doi: 10.1109/TGRS.2002.807587.
    [48] WU T D and CHEN Kunshan. A reappraisal of the validity of the IEM model for backscattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 743–753. doi: 10.1109/TGRS.2003.815405.
    [49] DU Yang. A new bistatic model for electromagnetic scattering from randomly rough surfaces[J]. Waves in Random and Complex Media, 2008, 18(1): 109–128. doi: 10.1080/17455030701459902.
    [50] OH Y, SARABANDI K, and ULABY F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 370–381. doi: 10.1109/36.134086.
    [51] DUBOIS P C, VAN ZYL J, and ENGMAN T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915–926. doi: 10.1109/36.406677.
    [52] CHEN Kunshan, YEN S K, and HUANG Wenpin. A simple model for retrieving bare soil moisture from radar-scattering coefficients[J]. Remote Sensing of Environment, 1995, 54(2): 121–126. doi: 10.1016/0034-4257(95)00129-O.
    [53] SHI Jiancheng, WANG J, HSU A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254–1266. doi: 10.1109/36.628792.
    [54] OH Y, SARABANDI K, and ULABY F T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1348–1355. doi: 10.1109/TGRS.2002.800232.
    [55] OH Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 596–601. doi: 10.1109/TGRS.2003.821065.
    [56] LOEW A and MAUSER W. A semiempirical surface backscattering model for bare soil surfaces based on a generalized power law spectrum approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 1022–1035. doi: 10.1109/TGRS.2005.862501.
    [57] 闫文佳. 基于微波散射模型与支持向量机算法的麦田参数反演研究[D]. [硕士论文], 华东师范大学, 2019.

    YAN Wenjia. Synergy of microwave scattering simulation and SVM algorithm for retrieval of biophysical parameters in wheat fields[D]. [Master dissertation], East China Normal University, 2019.
    [58] KATZIN M. The scattering of electromagnetic waves from rough surfaces[J]. Proceedings of the IEEE, 1964, 52(11): 1389–1390. doi: 10.1109/PROC.1964.3413.
    [59] RICE S O. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 1951, 4(2/3): 351–378. doi: 10.1002/cpa.3160040206.
    [60] 何宜军. 海浪微波散射理论模式[J]. 海洋与湖沼, 2000, 31(2): 178–185. doi: 10.3321/j.issn:0029-814X.2000.02.010.

    HE Yijun. An ocean wave microwave backscattering model[J]. Oceanologia et Limnologia Sinica, 2000, 31(2): 178–185. doi: 10.3321/j.issn:0029-814X.2000.02.010.
    [61] PLANT W J. A stochastic, multiscale model of microwave backscatter from the ocean[J]. Journal of Geophysical Research: Oceans, 2002, 107(C9): 3120. doi: 10.1029/2001JC000909.
    [62] HUANG Shaowu, TSANG L, NJOKU E G, et al. Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-Band for SMAP applications based on numerical solutions of maxwell equations in three-dimensional simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2557–2568. doi: 10.1109/TGRS.2010.2040748.
    [63] WOLF E. New theory of radiative energy transfer in free electromagnetic fields[J]. Physical Review D, 1976, 13(4): 869–886. doi: 10.1103/PhysRevD.13.869.
    [64] KARAM M A and FUNG A K. Leaf-shape effects in electromagnetic wave scattering from vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(6): 687–697. doi: 10.1109/TGRS.1989.1398241.
    [65] ZHANG Yuan, LIU Xiaohui, SU Shiliang, et al. Retrieving canopy height and density of paddy rice from Radarsat-2 images with a canopy scattering model[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 28: 170–180. doi: 10.1016/j.jag.2013.12.005.
    [66] 齐震. 水稻的微波散射模型[J]. 中国科学院研究生院学报, 1999, 16(2): 177–184.

    QI Zhen. The microwave backscattering model of rice[J]. Journal of University of Chinese Academy of Sciences, 1999, 16(2): 177–184.
    [67] 王芳, 陶建军, 姜良美. 农作物覆盖地表微波遥感模型研究进展[J]. 遥感技术与应用, 2011, 26(2): 255–262. doi: 10.11873/j.issn.1004-0323.2011.2.255.

    WANG Fang, TAO Jianjun, and JIANG Liangmei. Review of microwave remote sensing models of agricultural field[J]. Remote Sensing Technology and Application, 2011, 26(2): 255–262. doi: 10.11873/j.issn.1004-0323.2011.2.255.
    [68] 曹培, 王道伟, 林明壮, 等. 冬小麦覆被农田地表多层非均质混合电磁散射模型研究[J]. 农业机械学报, 2023, 54(11): 169–179,285. doi: 10.6041/j.issn.1000-1298.2023.11.016.

    CAO Pei, WANG Daowei, LIN Mingzhuang, et al. Electromagnetic scattering model of farmland surface covered with winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 169–179,285. doi: 10.6041/j.issn.1000-1298.2023.11.016.
    [69] 王芳, 张立新, 李丽英. 基于微波植被离散散射模型的小麦双站散射和辐射特征研究[J]. 遥感信息, 2008, 30(3): 7–14. doi: 10.3969/j.issn.1000-3177.2008.03.002.

    WANG Fang, ZHANG Lixin, and LI Liying. Discrete scatter model for microwave bistatic scattering and emission from wheat field[J]. Remote Sensing Information, 2008, 30(3): 7–14. doi: 10.3969/j.issn.1000-3177.2008.03.002.
    [70] WIGNERON J P, FERRAZZOLI P, OLIOSO A, et al. A simple approach to monitor crop biomass from C-band radar data[J]. Remote Sensing of Environment, 1999, 69(2): 179–188. doi: 10.1016/s0034-4257(99)00011-5.
    [71] TOURE A, THOMSON K P B, EDWARDS G, et al. Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 47–61. doi: 10.1109/36.285188.
    [72] 戈建军, 王超. 冬小麦微波散射特性研究[J]. 遥感信息, 2002, 24(3): 7–10,47. doi: 10.3969/j.issn.1000-3177.2002.03.002.

    GE Jianjun and WANG Chao. Winter wheat microwave scattering characteristics research[J]. Remote Sensing Information, 2002, 24(3): 7–10,47. doi: 10.3969/j.issn.1000-3177.2002.03.002.
    [73] 蔡爱民, 邵芸, 李坤, 等. 冬小麦不同生长期雷达后向散射特征分析与应用[J]. 农业工程学报, 2010, 26(7): 205–212. doi: 10.3969/j.issn.1002-6819.2010.07.036.

    CAI Aimin, SHAO Yun, LI Kun, et al. Analysis of backscattering characters of winter wheat in different phenophase and its applications[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 205–212. doi: 10.3969/j.issn.1002-6819.2010.07.036.
    [74] 王芳. 玉米地微波相干和非相干散射模型比较分析[J]. 安徽农业科学, 2012, 40(10): 6309–6312. doi: 10.13989/j.cnki.0517-6611.2012.10.177.

    WANG Fang. Comparisons between microwave coherent and incoherent scattering models in corn field[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 6309–6312. doi: 10.13989/j.cnki.0517-6611.2012.10.177.
    [75] 贾明权. 水稻微波散射特性研究及参数反演[D]. [博士论文], 电子科技大学, 2013.

    JIA Mingquan. Research on rice microwave scattering mechanism and parameter inversion[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2013.
    [76] MAITY S, PATNAIK C, CHAKRABORTY M, et al. Analysis of temporal backscattering of cotton crops using a semiempirical model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 577–587. doi: 10.1109/TGRS.2003.821888.
    [77] BRACAGLIA M, FERRAZZOLI P, and GUERRIERO L. A fully polarimetric multiple scattering model for crops[J]. Remote Sensing of Environment, 1995, 54(3): 170–179. doi: 10.1016/0034-4257(95)00151-4.
    [78] PRÉVOT L, CHAMPION I, and GUYOT G. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer[J]. Remote Sensing of Environment, 1993, 46(3): 331–339. doi: 10.1016/0034-4257(93)90053-Z.
    [79] MORAN M S, VIDAL A, TROUFLEAU D, et al. Ku- and C-band SAR for discriminating agricultural crop and soil conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 265–272. doi: 10.1109/36.655335.
    [80] INOUE Y, KUROSU T, MAENO H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002, 81(2/3): 194–204. doi: 10.1016/S0034-4257(01)00343-1.
    [81] PRASAD R. Retrieval of crop variables with field-based X-band microwave remote sensing of ladyfinger[J]. Advances in Space Research, 2009, 43(9): 1356–1363. doi: 10.1016/j.asr.2008.12.017.
    [82] PRASAD R. Estimation of kidney bean crop variables using ground-based scatterometer data at 9.89 GHz[J]. International Journal of Remote Sensing, 2011, 32(1): 31–48. doi: 10.1080/01431160903439866.
    [83] BÉRIAUX E, WALDNER F, COLLIENNE F, et al. Maize leaf area index retrieval from synthetic quad pol SAR time series using the water cloud model[J]. Remote Sensing, 2015, 7(12): 16204–16225. doi: 10.3390/rs71215818.
    [84] HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote Sensing of Environment, 2015, 170: 77–89. doi: 10.1016/j.rse.2015.09.002.
    [85] TAN Longfei, CHEN Yan, JIA Mingquan, et al. Rice biomass retrieval from advanced synthetic aperture radar image based on radar backscattering measurement[J]. Journal of Applied Remote Sensing, 2015, 9(1): 097091. doi: 10.1117/1.JRS.9.097091.
    [86] CHAUHAN S, SRIVASTAVA H S, and PATEL P. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data[J]. Remote Sensing of Environment, 2018, 216: 28–43. doi: 10.1016/j.rse.2018.06.014.
    [87] CHAUHAN S, SRIVASTAVA H S, and PATEL P. Crop height estimation using RISAT-1 hybrid-polarized synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2928–2933. doi: 10.1109/JSTARS.2019.2919604.
    [88] HOSSEINI M, MCNAIRN H, MITCHELL S, et al. Synthetic aperture radar and optical satellite data for estimating the biomass of corn[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101933. doi: 10.1016/j.jag.2019.101933.
    [89] MANDAL D, KUMAR V, MCNAIRN H, et al. Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 79: 24–34. doi: 10.1016/j.jag.2019.02.007.
    [90] MANDAL D, KUMAR V, LOPEZ-SANCHEZ J M, et al. Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of Water Cloud Model[J]. International Journal of Remote Sensing, 2020, 41(14): 5503–5524. doi: 10.1080/01431161.2020.1734261.
    [91] 张亚红, 张王菲, 姬永杰, 等. 油菜简缩极化参数响应及其长势参数反演[J]. 江苏农业科学, 2018, 46(15): 170–175. doi: 10.15889/j.issn.1002-1302.2018.15.046.

    ZHANG Yahong, ZHANG Wangfei, JI Yongjie, et al. Reduced polarization parameter response of rapeseed and its inversion of growth parameters[J]. Jiangsu Agricultural Sciences, 2018, 46(15): 170–175. doi: 10.15889/j.issn.1002-1302.2018.15.046.
    [92] CHAUHAN S, DARVISHZADEH R, BOSCHETTI M, et al. Estimation of crop angle of inclination for lodged wheat using multi-sensor SAR data[J]. Remote Sensing of Environment, 2020, 236: 111488. doi: 10.1016/j.rse.2019.111488.
    [93] JIAO Xianfeng, MCNAIRN H, SHANG Jiali, et al. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index[J]. Canadian Journal of Remote Sensing, 2011, 37(1): 69–81. doi: 10.5589/m11-023.
    [94] KUMAR V, KUMARI M, and SAHA S K. Leaf area index estimation of lowland rice using semi-empirical backscattering model[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073474. doi: 10.1117/1.JRS.7.073474.
    [95] MANDAL D, KUMAR V, BHATTACHARYA A, et al. A multi-year cross-validation experiment for estimating rice plant area index (PAI) over the JECAM-India test site from simulated RADARSAT constellation mission (RCM) compact polarimetric SAR data[J]. International Journal of Remote Sensing, 2021, 42(24): 9490–9522. doi: 10.1080/01431161.2021.1999528.
    [96] YANG Zhi, LI Kun, SHAO Yun, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote Sensing, 2016, 8(10): 878. doi: 10.3390/rs8100878.
    [97] TAO Liangliang, LI Jing, JIANG Jinbao, et al. Leaf area index inversion of winter wheat using modified water-cloud model[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 816–820. doi: 10.1109/LGRS.2016.2546945.
    [98] YADAV S A, PRASAD R, VISHWAKARMA A K, et al. Optimization of dual-polarized bistatic specular scatterometer for studying microwave scattering response and vegetation growth parameters retrieval of paddy crop using a machine learning algorithm[J]. Computers and Electronics in Agriculture, 2020, 175: 105592. doi: 10.1016/j.compag.2020.105592.
    [99] YADAV V P, PRASAD R, and BALA R. Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data[J]. Geocarto International, 2021, 36(7): 791–802. doi: 10.1080/10106049.2019.1624984.
    [100] CHEN Jinsong, LIN Hui, LIU Aixia, et al. A semi-empirical backscattering model for estimation of leaf area index (LAI) of rice in southern China[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 2007: 3667–3680. doi: 10.1109/IGARSS.2007.4423641.
    [101] KUMAR P, PRASAD R, GUPTA D K, et al. Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data[J]. Geocarto International, 2018, 33(9): 942–956. doi: 10.1080/10106049.2017.1316781.
    [102] SINGH D. Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band[J]. International Journal of Remote Sensing, 2006, 27(19): 4101–4115. doi: 10.1080/01431160600735988.
    [103] KWEON S K and OH Y. A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2802–2809. doi: 10.1109/TGRS.2014.2364914.
    [104] AHMADIAN N, ULLMANN T, VERRELST J, et al. Biomass assessment of agricultural crops using multi-temporal dual-polarimetric TerraSAR-X data[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87(4): 159–175. doi: 10.1007/s41064-019-00076-x.
    [105] HOSSEINI M, MCNAIRN H, MITCHELL S, et al. A comparison between support vector machine and water cloud model for estimating crop leaf area index[J]. Remote Sensing, 2021, 13(7): 1348. doi: 10.3390/rs13071348.
    [106] SONG Kaijun, ZHOU Xiaobing, and FAN Yong. Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1662–1672. doi: 10.1109/TGRS.2008.2009061.
    [107] VORONOVICH A G. Small-slope approximation in wave scattering by rough surfaces[J]. Journal of Experimental and Theoretical Physics, 1985, 62(1): 65–70.
    [108] YANG Huan, SONG Jiarui, TENG Yunhe, et al. Coupling model-driven and data-driven methods for estimating soil moisture over bare surfaces with Sentinel-1A dual-polarized data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4820–4832. doi: 10.1109/JSTARS.2023.3275995.
    [109] BOUCHAT J, TRONQUO E, ORBAN A, et al. Green area index and soil moisture retrieval in maize fields using multi-polarized C- and L-Band SAR data and the water cloud model[J]. Remote Sensing, 2022, 14(10): 2496. doi: 10.3390/rs14102496.
    [110] WANG Zhen, ZHAO Tianjie, QIU Jianxiu, et al. Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands[J]. GIScience & Remote Sensing, 2021, 58(1): 48–67. doi: 10.1080/15481603.2020.1857123.
    [111] SARADJIAN M R and HOSSEINI M. Soil moisture estimation by using multipolarization SAR image[J]. Advances in Space Research, 2011, 48(2): 278–286. doi: 10.1016/j.asr.2011.03.029.
    [112] 何媛, 文军, 张堂堂, 等. 卫星微波遥感结合可见光遥感估算黄河源区土壤湿度研究[J]. 遥感技术与应用, 2013, 28(2): 300–308. doi: 10.11873/j.issn.1004-0323.2013.2.300.

    HE Yuan, WEN Jun, ZHANG Tangtang, et al. A study on estimating soil moisture using microwave remote sensing combined with optical over the source region of the Yellow River[J]. Remote Sensing Technology and Application, 2013, 28(2): 300–308. doi: 10.11873/j.issn.1004-0323.2013.2.300.
    [113] DONG Zhe, GAO Maofang, and KARNIELI A. Soil moisture retrieval in the northeast China plain’s agricultural fields using single-temporal L-Band SAR and the coupled MWCM-Oh model[J]. Remote Sensing, 2025, 17(3): 478. doi: 10.3390/rs17030478.
    [114] ZHANG Rui, BAO Xin, HONG Ruikai, et al. Soil moisture retrieval over croplands using novel dual-polarization SAR vegetation index[J]. Agricultural Water Management, 2024, 306: 109159. doi: 10.1016/j.agwat.2024.109159.
    [115] 夏米西努尔·马逊江, 侯君英. 基于NDVI估算植被体散射的土壤水分反演研究[J]. 安徽农业科学, 2013, 41(29): 11652–11653,11657. doi: 10.13989/j.cnki.0517-6611.2013.29.048.

    MAXUNJIANG X and HOU Junying. Inversion study of estimation of soil moisture of vegetation scattering based on NDVI[J]. Journal of Anhui Agricultural Sciences, 2013, 41(29): 11652–11653,11657. doi: 10.13989/j.cnki.0517-6611.2013.29.048.
    [116] NARIN O G, BAYIK C, SEKERTEKIN A, et al. Crop height estimation of wheat using sentinel-1 satellite imagery: Preliminary results[J]. The International Archives of the Photogrammetry , Remote Sensing and Spatial Information Sciences, 2024, XLVIII-4/W9-2024: 267–273. doi: 10.5194/isprs-archives-XLVIII-4-W9-2024-267-2024.
    [117] WANG Xiaoxuan, LU Xiaoping, and YANG Zenan. A MWCMLAI-Net method for LAI inversion in maize and rice using GF-3 and Lutan radar data[J]. International Journal of Digital Earth, 2024, 17(1): 2341128. doi: 10.1080/17538947.2024.2341128.
    [118] LV Changchang, XIE Qinghua, PENG Xing, et al. Soil moisture retrieval over agricultural fields with machine learning: A comparison of quad-, compact-, and dual-polarimetric time-series SAR data[J]. Journal of Hydrology, 2024, 644: 132093. doi: 10.1016/j.jhydrol.2024.132093.
    [119] 谢永强. 集成多源数据与XGBoost算法京津冀地区土壤水分空间反演[J]. 地理空间信息, 2024, 22(12): 20–24,29. doi: 10.3969/j.issn.1672-4623.2024.12.005.

    XIE Yongqiang. Spatial inversion of soil moisture in the beijing-tianjin-hebei region using integrated multi-source data and XGBoost algorithm[J]. Geospatial Information, 2024, 22(12): 20–24,29. doi: 10.3969/j.issn.1672-4623.2024.12.005.
    [120] 段潘, 赵天杰, 郎姝燕, 等. 中法海洋卫星微波散射计青藏高原土壤水分反演研究[J]. 海洋气象学报, 2024, 44(4): 54–63. doi: 10.19513/j.cnki.hyqxxb.20240514002.

    DUAN Pan, ZHAO Tianjie, LANG Shuyan, et al. Study on CSCAT soil moisture retrieval in the Qinghai-Tibet Plateau[J]. Journal of Marine Meteorology, 2024, 44(4): 54–63. doi: 10.19513/j.cnki.hyqxxb.20240514002.
    [121] 时洪涛. 时序极化SAR土壤湿度及农作物生物物理参数估计方法研究[D]. [博士论文], 武汉大学, 2021. doi: 10.27379/d.cnki.gwhdu.2021.000142.

    SHI Hongtao. Soil moisture and crop biophysical parameters estimation from time series of PolSAR imageries[D]. [Ph.D. dissertation], Wuhan University, 2021. doi: 10.27379/d.cnki.gwhdu.2021.000142.
    [122] 王然, 赵建辉, 杨会巾, 等. 基于RIME-CNN-SVR模型的麦田土壤水分反演[J]. 农业工程学报, 2024, 40(15): 94–102. doi: 10.11975/j.issn.1002-6819.202312157.

    WANG Ran, ZHAO Jianhui, YANG Huijin, et al. Inversion of soil moisture in wheat farmlands using the RIME-CNN-SVR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(15): 94–102. doi: 10.11975/j.issn.1002-6819.202312157.
    [123] 刘昀昊, 李雪冬, 费龙, 等. 基于特征选择与遗传神经网络的土壤水分反演[J]. 中国农业气象, 2024, 45(10): 1095–1108. doi: 10.3969/j.issn.1000-6362.2024.10.001.

    LIU Yunhao, LI Xuedong, FEI Long, et al. Retrieving soil moisture based on feature selection and genetic neural network[J]. Chinese Journal of Agrometeorology, 2024, 45(10): 1095–1108. doi: 10.3969/j.issn.1000-6362.2024.10.001.
    [124] WANG Hongquan, MAGAGI R, and GOÏTA K. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields[J]. Remote Sensing of Environment, 2018, 217: 38–51. doi: 10.1016/j.rse.2018.08.003.
    [125] HUANG Xiaodong, WANG Jinfei, and SHANG Jiali. An integrated surface parameter inversion scheme over agricultural fields at early growing stages by means of C-Band polarimetric RADARSAT-2 imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2510–2528. doi: 10.1109/TGRS.2015.2502600.
    [126] XIAO Tengfei, XING Minfeng, HE Binbin, et al. Retrieving soil moisture over soybean fields during growing season through polarimetric decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1132–1145. doi: 10.1109/JSTARS.2020.3041828.
    [127] HAN Dong, WANG Pengxin, TANSEY K, et al. Combining Sentinel-1 and -3 imagery for retrievals of regional multitemporal biophysical parameters under a deep learning framework[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6985–6998. doi: 10.1109/JSTARS.2022.3200735.
    [128] KUSHWAHA A, DAVE R, KUMAR G, et al. Assessment of rice crop biophysical parameters using Sentinel-1 C-band SAR data[J]. Advances in Space Research, 2022, 70(12): 3833–3844. doi: 10.1016/j.asr.2022.02.021.
    [129] GURURAJ P, UMESH P, and SHETTY A. Evaluation of surface soil moisture models over heterogeneous agricultural plots using L-band SAR observations[J]. Geocarto International, 2022, 37(25): 10301–10319. doi: 10.1080/10106049.2022.2032398.
    [130] BRUNELLI B and MANCINI F. Comparative analysis of SAOCOM and Sentinel-1 data for surface soil moisture retrieval using a change detection method in a semiarid region (Douro River’s basin, Spain)[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 129: 103874. doi: 10.1016/j.jag.2024.103874.
    [131] 石家豪, 杨欢, 王富强, 等. 基于多源遥感数据的夏玉米覆盖地表土壤水分协同反演研究[J]. 中国农村水利水电, 2024(8): 136–143. doi: 10.12396/znsd.231854.

    SHI Jiahao, YANG Huan, WANG Fuqiang, et al. Collaborative inversion of soil moisture over summer maize covered surfaces based on multi-source remote sensing data[J]. China Rural Water and Hydropower, 2024(8): 136–143. doi: 10.12396/znsd.231854.
    [132] BETBEDER J, FIEUZAL R, and BAUP F. Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2540–2553. doi: 10.1109/JSTARS.2016.2541169.
    [133] ALLIES A, ROUMIGUIÉ A, DEJOUX J F, et al. Evaluation of multiorbital SAR and multisensor optical data for empirical estimation of rapeseed biophysical parameters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7268–7283. doi: 10.1109/JSTARS.2021.3095537.
    [134] 李小文, 赵红蕊, 张颢, 等. 全球变化与地表参数的定量遥感[J]. 地学前缘, 2002, 9(2): 365–370. doi: 10.3321/j.issn:1005-2321.2002.02.015.

    LI Xiaowen, ZHAO Hongrui, ZHANG Hao, et al. Global change study and quantitative remote sensing for land surface parameters[J]. Earth Science Frontiers, 2002, 9(2): 365–370. doi: 10.3321/j.issn:1005-2321.2002.02.015.
    [135] SEDIGHI A, HAMZEH S, ALAVIPANAH S K, et al. Ensembles of multiple models for soil moisture retrieval from remote sensing data over agricultural areas: A deep learning-based framework[J]. Remote Sensing Applications: Society and Environment, 2024, 35: 101243. doi: 10.1016/j.rsase.2024.101243.
  • 期刊类型引用(11)

    1. 江利明,杨波,肖鹏,周志伟,汪汉胜. 冰雪探测雷达层析成像技术与应用:现状、挑战与展望. 冰川冻土. 2024(03): 1069-1086 . 百度学术
    2. 马彦恒,侯建强,李根,刘新海. 基于方位向信息分离的机动SAR成像算法. 电子与信息学报. 2021(02): 364-371 . 百度学术
    3. 申文杰,韩冰,林赟,胡玉新,洪文. 多角度SAR动目标检测技术及其高分三号实验验证研究. 雷达学报. 2020(02): 304-320 . 本站查看
    4. 杨彦辉,林赟,洪文. 利用星载SAR单轨多角度地距图像提取高程信息. 测绘科学. 2019(07): 96-104 . 百度学术
    5. 马彦恒,侯建强. 机动合成孔径雷达成像研究现状与发展趋势. 兵器装备工程学报. 2019(11): 111-115 . 百度学术
    6. 洪文,王彦平,林赟,谭维贤,吴一戎. 新体制SAR三维成像技术研究进展. 雷达学报. 2018(06): 633-654 . 本站查看
    7. 成夏葳,王小瑞,聂建亮. 搭建BDS卫星时空信息综合服务平台的探讨. 导航定位学报. 2017(01): 55-58 . 百度学术
    8. 明峰,洪峻,张弘毅,李亮. 基于四维电子密度的地球同步轨道SAR电离层时变影响校正方法. 电子与信息学报. 2017(10): 2311-2316 . 百度学术
    9. 李亮,洪峻,明峰. 电离层对中高轨SAR影响机理研究. 雷达学报. 2017(06): 619-629 . 本站查看
    10. 张升,孙光才,邢孟道. GEOSAR舰船目标三维转动对检测信噪比影响分析. 电子与信息学报. 2016(05): 1261-1265 . 百度学术
    11. 何艳超,徐明,张润宁,李志武. 高精度重力场下回归轨道半解析优化设计. 宇航学报. 2016(05): 526-534 . 百度学术

    其他类型引用(8)

  • 加载中
图(3) / 表(1)
计量
  • 文章访问数: 31
  • HTML全文浏览量: 3
  • PDF下载量: 5
  • 被引次数: 19
出版历程
  • 收稿日期:  2024-12-26
  • 修回日期:  2025-04-08

目录

    /

    返回文章
    返回