基于子脉冲混合调制的探通一体波形设计技术

刘毓 张俊豪 姚雪 余显祥 崔国龙

刘毓, 张俊豪, 姚雪, 等. 基于子脉冲混合调制的探通一体波形设计技术[J]. 雷达学报(中英文), 2025, 14(4): 896–914. doi: 10.12000/JR24241
引用本文: 刘毓, 张俊豪, 姚雪, 等. 基于子脉冲混合调制的探通一体波形设计技术[J]. 雷达学报(中英文), 2025, 14(4): 896–914. doi: 10.12000/JR24241
LIU Yu, ZHANG Junhao, YAO Xue, et al. Dual function radar and communication waveform design based on sub-pulse hybrid modulation[J]. Journal of Radars, 2025, 14(4): 896–914. doi: 10.12000/JR24241
Citation: LIU Yu, ZHANG Junhao, YAO Xue, et al. Dual function radar and communication waveform design based on sub-pulse hybrid modulation[J]. Journal of Radars, 2025, 14(4): 896–914. doi: 10.12000/JR24241

基于子脉冲混合调制的探通一体波形设计技术

DOI: 10.12000/JR24241 CSTR: 32380.14.JR24241
基金项目: 国家自然科学基金(62271126),重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1156),重庆市教委科学技术研究项目(KJQN202201202)
详细信息
    作者简介:

    刘 毓,硕士,副教授,主要研究方向为雷达与光学图像配准、雷达波形设计与处理等

    张俊豪,本科生,主要研究方向为雷达与光学图像配准、雷达波形设计与处理等

    姚 雪,博士,主要研究方向为探通一体化波形设计与处理、多功能一体化波形设计、最优化理论算法以及阵列波形处理等

    余显祥,博士,副教授,主要研究方向为雷达波形设计与处理、最优化理论算法以及阵列波形处理等

    崔国龙,博士,教授,主要研究方向为最优化理论和算法、雷达目标检测理论、波形多样性以及阵列波形处理等

    通讯作者:

    姚雪 yaoxue_2016@163.com

  • 责任主编:唐波 Corresponding Editor: TANG Bo
  • 中图分类号: TN958

Dual Function Radar and Communication Waveform Design Based on Sub-pulse Hybrid Modulation

Funds: The National Natural Science Foundation of China (62271126), the Natural Science Foundation Project of Chongqing (CSTB2022NSCQ-MSX1156) and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202201202)
More Information
  • 摘要: 针对以雷达探测为首要功能的探通一体(DFRC)波形设计中通信速率低的问题,该文提出了一种基于子脉冲混合调制(SHM)的探通一体波形设计方法,利用波形子脉冲内/间时域、频域和极化域资源进行多维调制,实现了通信速率的有效提升。构建了以最小化正交波形簇自/互相关函数的峰值旁瓣电平(PSL)为准则,考虑SHM信息调制约束和波形恒模约束的一体化波形设计优化问题,并提出了频域主分量最小化(SMM)算法快速求解上述非凸优化问题。此外,提出了一种基于单脉冲的探通一体回波处理方法,使模糊函数零延时截线的第1个零点处多普勒频率变为传统波形的L(子脉冲数)倍,保证了一体化波形的高多普勒容忍度,实现了对高速目标的有效探测。

     

  • 图  1  一体化研究场景示意图

    Figure  1.  Work scenario for DFRC system

    图  2  多子脉冲结构的复基带波形示意图

    Figure  2.  The complex baseband waveform with multiple sub-pulse structure

    图  3  子脉冲内波形极化解调示意图

    Figure  3.  Intra-sub-pulse polarization-domain demodulation

    图  4  子脉冲内CS-PIP调制示例[18]

    Figure  4.  Intra-sub-pulse CS-PIP modulation example[18]

    图  5  子脉冲内CS-PIP解调示意图

    Figure  5.  Intra-sub-pulse CS-PIP demodulation

    图  6  子脉冲间波形位置排列解调示意图

    Figure  6.  Inter-sub-pulse waveform position permutation demodulation

    图  7  基于单脉冲的探通一体回波处理流程示意图

    Figure  7.  Single pulse DFRC echo processing procedure

    图  8  正交波形簇性能分析

    Figure  8.  Performance analysis of orthogonal waveform cluster

    图  9  不同通信码片数下通信性能分析

    Figure  9.  Communication performance analysis with different number of communication codes

    图  10  不同相位间隔下通信性能分析

    Figure  10.  Communication performance analysis with different phase intervals

    图  11  不同总码片数下通信性能分析

    Figure  11.  Communication performance analysis with different total number of codes

    图  12  不同正交波形数下通信性能分析

    Figure  12.  Communication performance analysis with different number of orthogonal waveforms

    图  13  相位差基数W对SER性能的影响分析

    Figure  13.  SER performance analysis with different W

    图  14  通信SER性能的影响因素分析

    Figure  14.  SER performance analysis with some factors

    图  15  基于单脉冲的DFRC探测回波处理结果

    Figure  15.  The results of single pulse DFRC echo processing

    图  16  基于单脉冲的多目标DFRC探测回波处理结果

    Figure  16.  The results of single pulse DFRC echo processing for multiple targets

    图  17  不同子脉冲数和不同带宽的DFRC探测回波处理结果

    Figure  17.  The results of single pulse DFRC echo processing with different number of sub-pulses and different bandwidths

    图  18  相近通信速率时SER随SNR的变化

    Figure  18.  SER versus SNR under similar communication rates

    图  19  多普勒容忍度分析

    Figure  19.  Doppler tolerance analysis

    表  1  信息解调方法步骤总结

    Table  1.   Summary of information demodulation methods

    信息调制方法 解调步骤1 解调步骤2 解调步骤3 解调步骤4 解调步骤5
    子脉冲内波形极化调制 子脉冲划分 计算空间方位$\left( {\theta ,\varphi } \right)$极化分量集合 虚拟极化匹配
    子脉冲内CS-PIP调制 子脉冲内波形极化解调 下变频 相位差检测 差值计算 选小估计
    子脉冲间波形位置排列调制 子脉冲内波形极化解调 下变频 匹配滤波 峰值提取 峰值选大
    下载: 导出CSV

    1  SMM算法求解优化问题$ {P_1} $

    1.   SMM algorithm for solving optimization problems $ {P_1} $

     输入:$N,L,{{\boldsymbol{q}}^{\left( 0 \right)}},p,{\mathrm{tol}},{N_{\rm c}},{l_{\rm c}},{U_1},\varepsilon ,{U_2}$;
     输出:优化问题$ {P_1} $的次优解$ {{\boldsymbol{q}}^ \star } $;
     1:$t = 0$,初始化${{\boldsymbol{q}}^{\left( t \right)}} = {{\boldsymbol{q}}^{\left( 0 \right)}}$;
     2:$t = t + 1$;
     3:计算$ {\boldsymbol{d}}_{l,\hat l}^{\left( {t - 1} \right)},\tilde {\boldsymbol{d}}_{l,\hat l}^{\left( {t - 1} \right)},\tilde {\tilde {\boldsymbol{d}}}_{l,\hat l}^{\left( {t - 1} \right)},\bar {\boldsymbol{d}} _{l,\hat l}^{\left( {t - 1} \right)},\bar {\bar {\boldsymbol{d}} } _{l,\hat l}^{\left( {t - 1} \right)} $;
     4:根据式(35)顺序求解$\phi _l^{\left( t \right)}\left( {{h_e}} \right),l = 1,2, \cdots ,L$;
     5:若$ \left\| {{{\boldsymbol{q}}^{\left( {t - 1} \right)}} - {{\boldsymbol{q}}^{\left( t \right)}}} \right\| \le {\mathrm{tol}} $, $ {{\boldsymbol{q}}^ \star } = {{\boldsymbol{q}}^{\left( t \right)}} $并退出,否则返回步
     骤2。
    下载: 导出CSV

    表  2  仿真分析信息调制主要参数设置

    Table  2.   Parameters setting for information modulation simulation

    变量类型 变量名 变量取值 变量名 变量取值
    子脉冲内CS-PIP调制 子脉冲波形码片数 $N = 512$ 子脉冲内通信码片数 ${N_{\rm c}} = 256$
    相位保护间隔 $\varepsilon = 0.4$ 子脉冲内通信码片相位差集合 $ {U_1}: = \left\{ {0,\pi } \right\} $
    子脉冲间波形排列调制 子脉冲个数 $L = 8$
    子脉冲内波形极化调制 发射极化分量集合
    ($P = 4$)
    $ \mathcal{K} : = \left\{ \begin{gathered} [\cos0.0157;\cos0.0157{\text{ }}{{\rm e}^{{\text{j}}0.0628}}] \\ [\cos0.8796;\cos0.8796{\text{ }}{{\rm e}^{{\text{j}}0.0628}}] \\ [\cos0.8796;\cos0.8796{\text{ }}{{\rm e}^{{\text{j}}2.1363}}] \\ [\cos0.8796;\cos0.8796{\text{ }}{{\rm e}^{{\text{j}}4.2097}}] \\ \end{gathered} \right\} $
    发射极化分量集合
    ($P = 8$)
    $ \left\{ \begin{gathered} [\cos0.1885;\cos0.1885{\text{ }}{{\rm e}^{{\text{j}}1.4451{\text{ }}}}],[\cos0.5341;\cos0.5341{\text{ }}{{\rm e}^{{\text{j}}4.2097}}] \\ [\cos0.5341;\cos0.5341{\text{ }}{{\rm e}^{{\text{j}}5.5920}}],[\cos0.7069;\cos0.7069{\text{ }}{{\rm e}^{{\text{j}}2.8274}}] \\ [\cos0.8796;\cos0.8796{\text{ }}{{\rm e}^{{\text{j}}1.4451}}],[\cos1.0524;\cos1.0524{\text{ }}{{\rm e}^{{\text{j}}0.0628}}] \\ [\cos1.0524;\cos1.0524{\text{ }}{{\rm e}^{{\text{j}}4.9009}}],[\cos1.3980;\cos1.3980{\text{ }}{{\rm e}^{{\text{j}}2.8274}}] \\ \end{gathered} \right\} $
    下载: 导出CSV

    表  3  仿真分析基础参数设置

    Table  3.   Basic parameters setting for simulation

    变量 取值 变量名 取值
    带宽 B = 5 MHz 子脉冲宽度 $ {T_0} $= 102.4 μs
    脉冲宽度 T = 819.2 μs 基带信号采样率 ${f_{\mathrm{s}}} $= 5 MHz
    子码片宽度 ${t_b}$ = 0.2 μs 目标回波SNR 0 dB
    载频 ${f_0} $= 2 GHz 目标距离 ${R_0} $ = 100 km
    目标速度 v = 150 m/s 通信用户方位 $\left( {\theta ,\varphi } \right) = \left( {{{30}^ \circ },{{10}^ \circ }} \right)$
    下载: 导出CSV

    表  4  一些典型参数下的通信比特数(1个PRT时间)

    Table  4.   Communication bits for some typical parameters (1 PRT time)

    序号参数设置SHMLFM-DPSK[16]FNM103[17]FNM311[17]
    $N = 512,{N_{\text{c}}} = 256,L = 8,P = 4$61194088103311
    $N = 512,{N_{\text{c}}} = 117,L = 8,P = 4$40794088103311
    $N = 512,{N_{\text{c}}} = 2,L = 8,P = 4$1034088103311
    $N = 512,{N_{\text{c}}} = 5,L = 8,P = 4$3114088103311
    $N = 512,{N_{\text{c}}} = 256,L = 16,P = 4$122524088103311
    $N = 512,{N_{\text{c}}} = 256,L = 8,P = 8$61274088103311
    下载: 导出CSV
  • [1] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [2] HASSANIEN A, AMIN M G, ABOUTANIOS E, et al. Dual-function radar communication systems: A solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 2019, 36(5): 115–126. doi: 10.1109/MSP.2019.2900571.
    [3] 刘永军, 廖桂生, 李海川, 等. 电磁空间分布式一体化波形设计与信息获取[J]. 中国科学基金, 2021, 35(5): 701–707. doi: 10.16262/j.cnki.1000-8217.2021.05.005.

    LIU Yongjun, LIAO Guisheng, LI Haichuan, et al. Distributed integrated waveform design and information acquisition in electromagnetic space[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(5): 701–707. doi: 10.16262/j.cnki.1000-8217.2021.05.005.
    [4] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Reliable frequency-hopping MIMO radar-based communications with multi-antenna receiver[J]. IEEE Transactions on Communications, 2021, 69(8): 5502–5513. doi: 10.1109/TCOMM.2021.3079270.
    [5] TSINOS C G, ARORA A, CHATZINOTAS S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378–1392. doi: 10.1109/JSTSP.2021.3112295.
    [6] LIU Rang, LI Ming, LIU Qian, et al. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1918–1931. doi: 10.1109/JSAC.2022.3155501.
    [7] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
    [8] YU Xianxiang, YAO Xue, YANG Jing, et al. Integrated waveform design for MIMO radar and communication via spatio-spectral modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 2293–2305. doi: 10.1109/TSP.2022.3170687.
    [9] TANG Bo and STOICA P. MIMO multifunction RF systems: Detection performance and waveform design[J]. IEEE Transactions on Signal Processing, 2022, 70: 4381–4394. doi: 10.1109/TSP.2022.3202315.
    [10] BAXTER W, ABOUTANIOS E, and HASSANIEN A. Joint radar and communications for frequency-hopped MIMO systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 729–742. doi: 10.1109/TSP.2022.3142909.
    [11] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
    [12] XU Jing, WANG Xiangrong, ABOUTANIOS E, et al. Hybrid index modulation for dual-functional radar communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3186–3200. doi: 10.1109/TVT.2022.3219888.
    [13] YAO Xue, YANG Jing, XIONG Kui, et al. Integrated signal design for MIMO DFRC with intrapulse index modulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1490–1504. doi: 10.1109/TAES.2023.3339118.
    [14] 刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.

    LIU Zhipeng. Waveform research on integration of radar and communication[D]. [Ph.D. dissertation], Beijing University of Technology, 2015.
    [15] SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1498–1503. doi: 10.1109/RADAR.2017.7944444.
    [16] CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644.
    [17] YANG Jing, CUI Guolong, YU Xianxiang, et al. Dual-use signal design for radar and communication via ambiguity function sidelobe control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9781–9794. doi: 10.1109/TVT.2020.3002773.
    [18] YAO Xue, LIU Yu, QIU H, et al. Dual-use baseband signal design for radCom with position index and phase modulation[J]. Signal Processing, 2023, 209: 109015. doi: 10.1016/j.sigpro.2023.109015.
    [19] YANG Jing, TAN Youshan, YU Xianxiang, et al. Waveform design for watermark framework based DFRC system with application on joint SAR imaging and communication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200214. doi: 10.1109/TGRS.2022.3232528.
    [20] GUO Caili, LIU Fangfang, CHEN Shuo, et al. Advances on exploiting polarization in wireless communications: Channels, technologies, and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 125–166. doi: 10.1109/COMST.2016.2606639.
    [21] HU Yaoyue, PAN Zhiwen, LIU Xiaobei, et al. Sliding window soft-SCL decoders for asynchronous polar-coded modulation[J]. IEEE Communications Letters, 2023, 27(1): 60–64. doi: 10.1109/LCOMM.2022.3213854.
    [22] ZHANG Bo, LIU Wei, and LAN Xiang. Directional modulation design based on crossed-dipole arrays for two signals with orthogonal polarizations[C]. 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.0428.
    [23] ZHANG Qiaoyu, YANG Zhaoyang, WANG Wen, et al. A dual-polarized antennas based directional modulation scheme[C]. 26th International Conference on Telecommunications, Hanoi, Vietnam, 2019: 468–473. doi: 10.1109/ICT.2019.8798807.
    [24] 倪吉华. 基于虚拟极化的目标增强与杂波抑制技术研究[D]. [硕士论文], 电子科技大学, 2006. doi: 10.7666/d.Y915593.

    NI Jihua. Research on target enhancement and clutter suppression techniques based on virtual polarization[D]. [Master dissertation], University of Electronic Science and Technology of China, 2006. doi: 10.7666/d.Y915593.
    [25] ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113.
    [26] SONG Junxiao, BABU P, and PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051–2064. doi: 10.1109/TSP.2015.2510982.
    [27] FAN Wen, LIANG Junli, CHEN Zihao, et al. Spectrally compatible aperiodic sequence set design with low cross- and auto-correlation PSL[J]. Signal Processing, 2021, 183: 107960. doi: 10.1016/j.sigpro.2020.107960.
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-03
  • 修回日期:  2025-05-29
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回