点云融合技术综述:方法、应用与挑战

宋绍京 李新建 方非易

宋绍京, 李新建, 方非易. 点云融合技术综述:方法、应用与挑战[J]. 雷达学报(中英文), 2025, 14(3): 528–547. doi: 10.12000/JR24236
引用本文: 宋绍京, 李新建, 方非易. 点云融合技术综述:方法、应用与挑战[J]. 雷达学报(中英文), 2025, 14(3): 528–547. doi: 10.12000/JR24236
SONG Shaojing, LI Xinjian, and FANG Feiyi. A review of point cloud fusion technology: Methods, applications, and challenges[J]. Journal of Radars, 2025, 14(3): 528–547. doi: 10.12000/JR24236
Citation: SONG Shaojing, LI Xinjian, and FANG Feiyi. A review of point cloud fusion technology: Methods, applications, and challenges[J]. Journal of Radars, 2025, 14(3): 528–547. doi: 10.12000/JR24236

点云融合技术综述:方法、应用与挑战

DOI: 10.12000/JR24236 CSTR: 32380.14.JR24236
详细信息
    作者简介:

    宋绍京,博士,教授,主要研究方向为机器视觉、自动驾驶、光电信息处理等

    李新建,硕士生,主要研究方向为自动驾驶、点云融合、3D目标检测等

    方非易,博士,主要研究方向为图像分割、多模态机器学习、无人驾驶等

    通讯作者:

    方非易 fyfang@sspu.edu.cn

  • 责任主编:陈育伟 Corresponding Editor: CHEN Yuwei
  • 中图分类号: TN95

A Review of Point Cloud Fusion Technology: Methods, Applications, and Challenges

More Information
  • 摘要: 点云融合技术作为3D (Three-Dimensional)数据处理的重要手段,在多个领域展现出巨大的潜力和应用前景。该文系统地综述了点云融合的基础概念、常用技术方法及其应用,深入分析了不同方法的发展现状和未来发展趋势。此外,该文还探讨了点云融合在自动驾驶、建筑和机器人等领域的实际应用及面临的挑战,尤其是在应对噪声、数据稀疏性和密度不均等问题时,如何在保证融合精度的同时平衡其复杂性。通过全面梳理现有研究进展,为未来点云融合技术的发展提供了有力参考,并为进一步提升融合算法的精度、鲁棒性和效率指明了可能的研究方向。

     

  • 图  1  点云数据表示

    Figure  1.  Point cloud data representation

    图  2  多源点云融合示例图

    Figure  2.  Example of multi-source point cloud fusion

    图  3  多帧点云融合示例图

    Figure  3.  Example of multi-frame point cloud fusion

    图  4  多视角点云融合示例图

    Figure  4.  Example of multi-view point cloud fusion

    图  5  多源点云融合时间线

    Figure  5.  Multi-source point cloud fusion timeline

    图  6  前融合3D模型开发和评估的流程图[36]

    Figure  6.  Flowchart of pre-fusion 3D model development and evaluation[36]

    图  7  PillarGrid Network[43]

    Figure  7.  PillarGrid Network[43]

    图  8  多专家学习框架[51]

    Figure  8.  Multi-expert learning framework[51]

    图  9  多帧点云融合时间线

    Figure  9.  Multi-frame point cloud fusion timeline

    图  10  基于LSTM的时序检测方法[56]

    Figure  10.  LSTM-based time series detection method[56]

    图  11  3D-MAN结构框图[58]

    Figure  11.  3D-MAN structure diagram[58]

    图  12  利用点云序列进行离线三维目标检测的框架[59]

    Figure  12.  Framework for offline 3D object detection using point cloud sequences[59]

    图  13  多视角点云融合时间线

    Figure  13.  Multi-view point cloud fusion timeline

    图  14  改进的尺度PCA-ICP算法的实现过程[69]

    Figure  14.  The implementation process of the improved scaled PCA-ICP algorithm[69]

    图  15  多视图聚类框架[71]

    Figure  15.  Multi-view clustering framework[71]

    图  16  多视角激光点云拼接技术流程图[77]

    Figure  16.  Multi-view laser point cloud stitching technology flow chart[77]

    图  17  全向点云融合方法流程图[78]

    Figure  17.  Flowchart of the omnidirectional point cloud fusion method[78]

    表  1  铁路桥梁点云采集技术及融合算法

    Table  1.   Point cloud from capturing techniques and fusion algorithms of the railway bridge

    点云数据 点的数量 精度(m) 平均覆盖率(%) 平均密度(标准差)(点/0.1 m3)
    TLS: Leica P20 12,669,642 0.003 65.64 173 (102)
    MLS: Navvis VLX2 18,401,315 0.006 65.30 259 (71)
    SFM: DJI P4 + Pix4D 1,322,080 0.050 43.37 20.0 (8.0)
    SOTA fusion 32,393,037 0.050 100 372 (146)
    Weighted fusion 23,808,697 0.025 100 266 (14)
    下载: 导出CSV

    表  2  点云融合相关数据集

    Table  2.   Point cloud fusion related datasets

    类型 数据集名称 主要传感器 优势 劣势
    多源
    点云
    融合
    KITTI[23] LiDAR、RGB摄像头、GPS 提供真实驾驶场景,广泛
    应用于自动驾驶领域
    场景复杂性较低,较少覆盖
    复杂动态场景
    nuScenes[24] LiDAR、雷达、RGB摄像头、IMU 多种传感器数据同步,
    场景多样,标注丰富
    数据量大,处理难度高
    Waymo Open Dataset[28] LiDAR、摄像头 更大规模的数据,覆盖复杂的
    城市驾驶场景
    数据集体量庞大,
    计算资源需求较高
    A2D2[29] LiDAR、RGB摄像头、IMU、雷达 提供详细的传感器信息,
    丰富的驾驶场景
    数据集较新,社区支持
    相对较少
    ApolloScape[30] LiDAR、RGB摄像头、GPS 大规模城市场景,支持3D点云
    与图像融合
    数据质量不及KITTI等较为标准
    多帧
    点云
    融合
    Oxford RobotCar[25] LiDAR、相机、GPS、IMU 涵盖不同天气、光照条件下的
    长时间序列点云
    数据复杂度高,长时间处理
    需要大量存储资源
    Argoverse[31] LiDAR、RGB摄像头、GPS 提供不同时间点的数据,支持
    多帧点云融合和动态场景检测
    标注信息不如其他自动驾驶
    数据集丰富
    TUM RGB-D[32] RGB-D相机 提供室内动态场景的
    连续点云与图像
    局限于室内环境,传感器
    类型单一
    Kaist Urban[33] LiDAR、相机、GPS、IMU 多帧时序数据丰富,场景涵盖
    日夜不同条件
    主要集中于城市场景
    多视角
    点云
    融合
    斯坦福3D扫描模型库[26] 用斯坦福大型雕塑扫描仪、Cyber ware 3030 MS扫描仪 包含9种不同目标的
    多视图扫描点云数据
    无真实纹理或光照变化;数据
    规模较小,场景复杂度低
    UWA3M 数据集[27] RGB-D相机 提供物体实例级标注 场景多样性不足(主要为
    桌面物体)
    Augmented ICL-NUIM
    数据集[34]
    合成RGB-D数据(模拟Kinect) 大型室内场景数据集,包含Living room 1, Living room 2, Office 1
    和Office 2共4个场景序列
    合成数据与真实传感器数据存在域差异;场景复杂度较低(多为室内简单布局)
    3DMatch[35] RGB-D相机 丰富的室内场景点云数据,适合
    多视角配准和3D重建
    场景局限于室内,
    缺少室外复杂场景
    下载: 导出CSV
  • [1] ABBASI R, BASHIR A K, ALYAMANI H J, et al. Lidar point cloud compression, processing and learning for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 962–979. doi: 10.1109/TITS.2022.3167957.
    [2] QURESHI A H, ALALOUL W S, MURTIYOSO A, et al. Smart rebar progress monitoring using 3D point cloud model[J]. Expert Systems with Applications, 2024, 249: 123562. doi: 10.1016/j.eswa.2024.123562.
    [3] PETKOV P. Object detection and recognition with PointPillars in LiDAR point clouds-comparisions[R]. NSC-614-5849, 2024.
    [4] 龚靖渝, 楼雨京, 柳奉奇, 等. 三维场景点云理解与重建技术[J]. 中国图象图形学报, 2023, 28(6): 1741–1766. doi: 10.11834/jig.230004.

    GONG Jingyu, LOU Yujing, LIU Fengqi, et al. Scene point cloud understanding and reconstruction technologies in 3D space[J]. Journal of Image and Graphics, 2023, 28(6): 1741–1766. doi: 10.11834/jig.230004.
    [5] ZHANG Bo, WANG Haosen, YOU Suilian, et al. A small-size 3D object detection network for analyzing the sparsity of raw LiDAR point cloud[J]. Journal of Russian Laser Research, 2023, 44(6): 646–655. doi: 10.1007/s10946-023-10173-3.
    [6] LI Shaorui, ZHU Zhenchang, DENG Weitang, et al. Estimation of aboveground biomass of different vegetation types in mangrove forests based on UAV remote sensing[J]. Sustainable Horizons, 2024, 11: 100100. doi: 10.1016/j.horiz.2024.100100.
    [7] 余杭. 基于激光雷达的3D目标检测研究综述[J]. 汽车文摘, 2024(2): 18–27. doi: 10.19822/j.cnki.1671-6329.20230082.

    YU Hang. A review on LiDAR-based 3D target detection research[J]. Automotive Digest, 2024(2): 18–27. doi: 10.19822/j.cnki.1671-6329.20230082.
    [8] 郭迟, 刘阳, 罗亚荣, 等. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057–1076. doi: 10.11947/j.AGCS.2024.20230259.

    GUO Chi, LIU Yang, LUO Yarong, et al. Research progress in the application of image semantic information in visual SLAM[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057–1076. doi: 10.11947/j.AGCS.2024.20230259.
    [9] ZHANG L, VAN OOSTEROM P, and LIU H. Visualization of point cloud models in mobile augmented reality using continuous level of detail method[C]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, London, UK, 2020: 167–170. doi: 10.5194/isprs-archives-XLIV-4-W1-2020-167-2020.
    [10] POLIYAPRAM V, WANG Weimin, and NAKAMURA R. A point-wise LiDAR and image multimodal fusion network (PMNet) for aerial point cloud 3D semantic segmentation[J]. Remote Sensing, 2019, 11(24): 2961. doi: 10.3390/rs11242961.
    [11] ZENG Tianjiao, ZHANG Wensi, ZHAN Xu, et al. A novel multimodal fusion framework based on point cloud registration for near-field 3D SAR perception[J]. Remote Sensing, 2024, 16(6): 952. doi: 10.3390/rs16060952.
    [12] CRISAN A, PEPE M, COSTANTINO D, et al. From 3D point cloud to an intelligent model set for cultural heritage conservation[J]. Heritage, 2024, 7(3): 1419–1437. doi: 10.3390/heritage7030068.
    [13] KIVILCIM C Ö and DURAN Z. A semi-automated point cloud processing methodology for 3D cultural heritage documentation[C]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 2016: 293–296. doi: 10.5194/isprs-archives-XLI-B5-293-2016.
    [14] WANG Yong, ZHOU Pengbo, GENG Guohua, et al. Enhancing point cloud registration with transformer: Cultural heritage protection of the Terracotta Warriors[J]. Heritage Science, 2024, 12(1): 314. doi: 10.1186/s40494-024-01425-9.
    [15] YANG Su, HOU Miaole, and LI Songnian. Three-dimensional point cloud semantic segmentation for cultural heritage: A comprehensive review[J]. Remote Sensing, 2023, 15(3): 548. doi: 10.3390/rs15030548.
    [16] 李佳益, 马智亮, 陈礼杰, 等. 面向施工机器人定位的多模态数据融合方法研究综述[J]. 计算机工程与应用, 2024, 60(15): 11–23. doi: 10.3778/j.issn.1002-8331.2402-0008.

    LI Jiayi, MA Zhiliang, CHEN Lijie, et al. Comprehensive review of multimodal data fusion methods for construction robot localization[J]. Computer Engineering and Applications, 2024, 60(15): 11–23. doi: 10.3778/j.issn.1002-8331.2402-0008.
    [17] 周燕, 李文俊, 党兆龙, 等. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916–929. doi: 10.3778/j.issn.1673-9418.2309010.

    ZHOU Yan, LI Wenjun, DANG Zhaolong, et al. Survey of 3D model recognition based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916–929. doi: 10.3778/j.issn.1673-9418.2309010.
    [18] WANG Zhengren. 3D representation methods: A survey[J]. arXiv preprint arXiv, 2410.06475, 2024.
    [19] ZHOU Yin, SUN Pei, ZHANG Yu, et al. End-to-end multi-view fusion for 3D object detection in LiDAR point clouds[C]. The 3rd Annual Conference on Robot Learning, Osaka, Japan, 2019: 923–932.
    [20] 陈慧娴, 吴一全, 张耀. 基于深度学习的三维点云分析方法研究进展[J]. 仪器仪表学报, 2023, 44(11): 130–158. doi: 10.19650/j.cnki.cjsi.J2311134.

    CHEN Huixian, WU Yiquan, and ZHANG Yao. Research progress of 3D point cloud analysis methods based on deep learning[J]. Chinese Journal of Scientific Instrument, 2023, 44(11): 130–158. doi: 10.19650/j.cnki.cjsi.J2311134.
    [21] LUO Haojun and WEN C Y. A low-cost relative positioning method for UAV/UGV coordinated heterogeneous system based on visual-lidar fusion[J]. Aerospace, 2023, 10(11): 924. doi: 10.3390/aerospace10110924.
    [22] LI Yangyan, BU Rui, SUN Mingchao, et al. PointCNN: Convolution on X-transformed points[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal Canada, 2018: 828–838.
    [23] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231–1237. doi: 10.1177/0278364913491297.
    [24] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: A multimodal dataset for autonomous driving[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11621–11631. DOI: 10.1109/CVPR42600.2020.01164.
    [25] MADDERN W, PASCOE G, LINEGAR C, et al. 1 year, 1000 km: The oxford robotcar dataset[J]. The International Journal of Robotics Research, 2017, 36(1): 3–15. doi: 10.1177/0278364916679498.
    [26] CURLESS B and LEVOY M. A volumetric method for building complex models from range images[C]. The 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, USA, 1996: 303–312. doi: 10.1145/237170.237269.
    [27] MIAN A S, BENNAMOUN M, and OWENS R A. A novel representation and feature matching algorithm for automatic pairwise registration of range images[J]. International Journal of Computer Vision, 2006, 66(1): 19–40. doi: 10.1007/s11263-005-3221-0.
    [28] SUN Pei, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2446–2454. doi: 10.1109/CVPR42600.2020.00252.
    [29] GEYER J, KASSAHUN Y, MAHMUDI M, et al. A2D2: Audi autonomous driving dataset[J]. arXiv preprint arXiv, 2004.06320, 2020.
    [30] HUANG Xinyu, CHENG Xinjing, GENG Qichuan, et al. The apolloscape dataset for autonomous driving[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 954–960. doi: 10.1109/CVPRW.2018.00141.
    [31] CHANG Mingfang, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8748–8757. doi: 10.1109/CVPR.2019.00895.
    [32] STURM J, BURGARD W, and CREMERS D. Evaluating egomotion and structure-from-motion approaches using the TUM RGB-D benchmark[C]. The Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RJS International Conference on Intelligent Robot Systems, Vilamoura, Algarve, 2012: 6.
    [33] CHOI Y, KIM N, HWANG S, et al. KAIST multi-spectral day/night data set for autonomous and assisted driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 934–948. doi: 10.1109/TITS.2018.2791533.
    [34] CHOI S, ZHOU Qianyi, and KOLTUN V. Robust reconstruction of indoor scenes[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5556–5565. doi: 10.1109/CVPR.2015.7299195.
    [35] ZENG A, SONG S, NIEßNER M, et al. 3DMatch: Learning local geometric descriptors from RGB-D reconstructions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1802–1811. doi: 1 0.1109/CVPR.2017.29.
    [36] ABDELAZEEM M, ELAMIN A, AFIFI A, et al. Multi-sensor point cloud data fusion for precise 3D mapping[J]. The Egyptian Journal of Remote Sensing and Space Science, 2021, 24(3): 835–844. doi: 10.1016/j.ejrs.2021.06.002.
    [37] CÓRDOVA-ESPARZA D M, TERVEN J R, JIMÉNEZ-HERNÁNDEZ H, et al. A multiple camera calibration and point cloud fusion tool for Kinect V2[J]. Science of Computer Programming, 2017, 143: 1–8. doi: 10.1016/j.scico.2016.11.004.
    [38] PANAGIOTIDIS D, ABDOLLAHNEJAD A, and SLAVÍK M. 3D point cloud fusion from UAV and TLS to assess temperate managed forest structures[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102917. doi: 10.1016/j.jag.2022.102917.
    [39] YANG Weijun, LIU Yang, HE Huagui, et al. Airborne LiDAR and photogrammetric point cloud fusion for extraction of urban tree metrics according to street network segmentation[J]. IEEE Access, 2021, 9: 97834–97842. doi: 10.1109/ACCESS.2021.3094307.
    [40] PARVAZ S, TEFERLE F, and NURUNNABI A. Airborne cross-source point clouds fusion by slice-to-slice adjustment[C]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Athens, Greece, 2024: 161–168. doi: 10.5194/isprs-annals-X-4-W4-2024-161-2024.
    [41] CHENG Hongtai and HAN Jiayi. Toward precise dense 3D reconstruction of indoor hallway: A confidence-based panoramic LiDAR point cloud fusion approach[J]. Industrial Robot, 2025, 52(1): 116–125. doi: 10.1108/IR-03-2024-0132.
    [42] LI Shiming, GE Xuming, HU Han, et al. Laplacian fusion approach of multi-source point clouds for detail enhancement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 385–396. doi: 10.1016/j.isprsjprs.2020.11.021.
    [43] BAI Zhengwei, WU Guoyuan, BARTH M J, et al. PillarGrid: Deep learning-based cooperative perception for 3D object detection from onboard-roadside LiDAR[C]. 2022 IEEE 25th International Conference on Intelligent Transportation Systems, Macau, China, 2022: 1743–1749. doi: 10.1109/ITSC55140.2022.9921947.
    [44] ZHANG Pengcheng, HE Huagui, WANG Yun, et al. 3D urban buildings extraction based on airborne LiDAR and photogrammetric point cloud fusion according to U-Net deep learning model segmentation[J]. IEEE Access, 2022, 10: 20889–20897. doi: 10.1109/ACCESS.2022.3152744.
    [45] GUO Lijie, WU Yanjie, DENG Lei, et al. A feature-level point cloud fusion method for timber volume of forest stands estimation[J]. Remote Sensing, 2023, 15(12): 2995. doi: 10.3390/rs15122995.
    [46] QIAO Donghao and ZULKERNINE F. Adaptive feature fusion for cooperative perception using LiDAR point clouds[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 1186–1195. doi: 10.1109/WACV56688.2023.00124.
    [47] GRIFONI E, VANNINI E, LUNGHI I, et al. 3D multi-modal point clouds data fusion for metrological analysis and restoration assessment of a panel painting[J]. Journal of Cultural Heritage, 2024, 66: 356–366. doi: 10.1016/j.culher.2023.12.007.
    [48] CHEN Qi, TANG Sihai, YANG Qing, et al. Cooper: Cooperative perception for connected autonomous vehicles based on 3D point clouds[C]. 2019 IEEE 39th International Conference on Distributed Computing Systems, Dallas, USA, 2019: 514–524. doi: 10.1109/ICDCS.2019.00058.
    [49] HURL B, COHEN R, CZARNECKI K, et al. TruPercept: Trust modelling for autonomous vehicle cooperative perception from synthetic data[C]. 2020 IEEE Intelligent Vehicles Symposium, Las Vegas, USA, 2020: 341–347. doi: 10.1109/IV47402.2020.9304695.
    [50] LI Jie, ZHUANG Yiqi, PENG Qi, et al. Pose estimation of non-cooperative space targets based on cross-source point cloud fusion[J]. Remote Sensing, 2021, 13(21): 4239. doi: 10.3390/rs13214239.
    [51] TANG Zhiri, HU Ruihan, CHEN Yanhua, et al. Multi-expert learning for fusion of pedestrian detection bounding box[J]. Knowledge-Based Systems, 2022, 241: 108254. doi: 10.1016/j.knosys.2022.108254.
    [52] YU Haibao, LUO Yizhen, SHU Mao, et al. DAIR-V2X: A large-scale dataset for vehicle-infrastructure cooperative 3D object detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 21361–21370. doi: 10.1109/CVPR52688.2022.02067.
    [53] RIZALDY A, AFIFI A J, GHAMISI P, et al. Dimensional dilemma: Navigating the fusion of hyperspectral and LiDAR point cloud data for optimal precision-2D vs. 3D[C]. 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 7729–7733. doi: 10.1109/IGARSS53475.2024.10641140.
    [54] LUO Wenjie, YANG Bin, and URTASUN R. Fast and furious: Real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3569–3577. doi: 10.1109/CVPR.2018.00376.
    [55] LI Jing, LI Rui, WANG Junzheng, et al. Obstacle information detection method based on multiframe three-dimensional lidar point cloud fusion[J]. Optical Engineering, 2019, 58(11): 116102. doi: 10.1117/1.OE.58.11.116102.
    [56] HUANG Rui, ZHANG Wanyue, KUNDU A, et al. An LSTM approach to temporal 3D object detection in LiDAR point clouds[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 266–282. doi: 10.1007/978-3-030-58523-5_16.
    [57] YIN Junbo, SHEN Jianbing, GUAN Chenye, et al. LiDAR-based online 3D video object detection with graph-based message passing and spatiotemporal transformer attention[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11495–11504. doi: 10.1109/CVPR42600.2020.01151.
    [58] YANG Zetong, ZHOU Yin, CHEN Zhifeng, et al. 3D-MAN: 3D multi-frame attention network for object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1863–1872. doi: 10.1109/CVPR46437.2021.00190.
    [59] QI C R, ZHOU Yin, NAJIBI M, et al. Offboard 3D object detection from point cloud sequences[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6134–6144. doi: 10.1109/CVPR46437.2021.00607.
    [60] SUN Pei, WANG Weiyue, CHAI Yuning, et al. RSN: Range sparse net for efficient, accurate LiDAR 3D object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5725–5734. doi: 10.1109/CVPR46437.2021.00567.
    [61] YIN Tianwei, ZHOU Xingyi, and KRÄHENBÜHL P. Center-based 3D object detection and tracking[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11784–11793. doi: 10.1109/CVPR46437.2021.01161.
    [62] LUO Chenxu, YANG Xiaodong, and YUILLE A. Exploring simple 3D multi-object tracking for autonomous driving[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10488–10497. doi: 10.1109/ICCV48922.2021.01032.
    [63] 毛冬海, 李守军, 王锋, 等. LiDAR测量点云融合影像的分块滤波方法[J]. 测绘通报, 2021(10): 67–72, 131. doi: 10.13474/j.cnki.11-2246.2021.307.

    MAO Donghai, LI Shoujun, WANG Feng, et al. Block filtering method for LiDAR point cloud fusion image[J]. Bulletin of Surveying and Mapping, 2021(10): 67–72, 131. doi: 10.13474/j.cnki.11-2246.2021.307.
    [64] CHEN Xuesong, SHI Shaoshuai, ZHU Benjin, et al. MPPNet: Multi-frame feature intertwining with proxy points for 3D temporal object detection[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 680–697. doi: 10.1007/978-3-031-20074-8_39.
    [65] HU Yihan, DING Zhuangzhuang, GE Runzhou, et al. AFDetV2: Rethinking the necessity of the second stage for object detection from point clouds[C]. The 36th AAAI Conference on Artificial Intelligence, 2022: 969–979. doi: 10.1609/aaai.v36i1.19980.
    [66] HE Chenhang, LI Ruihuang, ZHANG Yabin, et al. MSF: Motion-guided sequential fusion for efficient 3D object detection from point cloud sequences[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 5196–5205. doi: 10.1109/CVPR52729.2023.00503.
    [67] SHI Lingfeng, LV Yunfeng, YIN Wei, et al. Autonomous multiframe point cloud fusion method for mmWave radar[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 4505708. doi: 10.1109/TIM.2023.3302936.
    [68] YANG Yanding, JIANG Kun, YANG Diange, et al. Temporal point cloud fusion with scene flow for robust 3D object tracking[J]. IEEE Signal Processing Letters, 2022, 29: 1579–1583. doi: 10.1109/LSP.2022.3185948.
    [69] CHEN Hui, FENG Yan, YANG Jian, et al. 3D reconstruction approach for outdoor scene based on multiple point cloud fusion[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(10): 1761–1772. doi: 10.1007/s12524-019-01029-y.
    [70] CHENG Yuqi, LI Wenlong, JIANG Cheng, et al. MVGR: Mean-variance minimization global registration method for multiview point cloud in robot inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8504915. doi: 10.1109/TIM.2024.3413191.
    [71] LIU Junjie, LIU Junlong, YAN Shaotian, et al. MPC: Multi-view probabilistic clustering[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9509–9518. doi: 10.1109/CVPR52688.2022.00929.
    [72] KLOEKER L, KOTULLA C, and ECKSTEIN L. Real-time point cloud fusion of multi-LiDAR infrastructure sensor setups with unknown spatial location and orientation[C]. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, Rhodes, Greece, 2020: 1–8. doi: 10.1109/ITSC45102.2020.9294312.
    [73] YU Xumin, TANG Lulu, RAO Yongming, et al. Point-BERT: Pre-training 3D point cloud transformers with masked point modeling[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 19313–19322. doi: 10.1109/CVPR52688.2022.01871.
    [74] LI Yao, ZHOU Yong, ZHAO Jiaqi, et al. FA-MSVNet: Multi-scale and multi-view feature aggregation methods for stereo 3D reconstruction[J]. Multimedia Tools and Applications, 2024: 1–23. doi: 10.1007/s11042-024-20431-4.
    [75] CHEN Zhimin, LI Yingwei, JING Longlong, et al. Point cloud self-supervised learning via 3D to multi-view masked autoencoder[J]. arXiv preprint arXiv, 2311.10887, 2023.
    [76] LING Xiao and QIN Rongjun. A graph-matching approach for cross-view registration of over-view and street-view based point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 2–15. doi: 10.1016/j.isprsjprs.2021.12.013.
    [77] 深圳市博大建设集团有限公司. 一种多视角三维激光点云拼接方法及系统[P]. 中国, 202411659468.1, 2024.

    Shenzhen Boda Construction Group Co., Ltd. Multi-view three-dimensional laser point cloud splicing method and system[P]. CN, 202411659468.1, 2024.
    [78] 北京鹏太光耀科技有限公司. 一种基于多目结构光的全向点云融合方法[P]. 中国, 202411346535.4, 2025.

    Beijing Pengtai Guangyao Technology Co., Ltd. Omnidirectional point cloud fusion method based on multi-view structured light[P]. CN, 202411346535.4, 2025.
    [79] KHAN K N, KHALID A, TURKAR Y, et al. VRF: Vehicle road-side point cloud fusion[C]. The 22nd Annual International Conference on Mobile Systems, Applications and Services, Tokyo, Japan, 2024: 547–560. doi: 10.1145/3643832.3661874.
    [80] BREYER M, OTT L, SIEGWART R, et al. Closed-loop next-best-view planning for target-driven grasping[C]. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, 2022: 1411–1416. doi: 10.1109/IROS47612.2022.9981472.
    [81] JIANG Changjian, GAO Ruilan, SHAO Kele, et al. LI-GS: Gaussian splatting with LiDAR incorporated for accurate large-scale reconstruction[J]. IEEE Robotics and Automation Letters, 2025, 10(2): 1864–1871. doi: 10.1109/LRA.2024.3522846.
    [82] YANG Shuo, LU Huimin, and LI Jianru. Multifeature fusion-based object detection for intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 1126–1133. doi: 10.1109/TITS.2022.3155488.
    [83] MA Nan, XIAO Chuansheng, WANG Mohan, et al. A review of point cloud and image cross-modal fusion for self-driving[C]. 2022 18th International Conference on Computational Intelligence and Security, Chengdu, China, 2022: 456–460. doi: 10.1109/CIS58238.2022.00103.
    [84] LIU Zhijian, TANG Haotian, AMINI A, et al. BEVFusion: Multi-task multi-sensor fusion with unified bird's-eye view representation[C]. 2023 IEEE International Conference on Robotics and Automation, London, UK, 2023: 2774–2781. doi: 10.1109/ICRA48891.2023.10160968.
    [85] KUMAR G A, LEE J H, HWANG J, et al. LiDAR and camera fusion approach for object distance estimation in self-driving vehicles[J]. Symmetry, 2020, 12(2): 324. doi: 10.3390/sym12020324.
    [86] HUANG Keli, SHI Botian, LI Xiang, et al. Multi-modal sensor fusion for auto driving perception: A survey[J]. arXiv preprint arXiv, 2202.02703, 2022.
    [87] CAI Yiyi, OU Yang, and QIN Tuanfa. Improving SLAM techniques with integrated multi-sensor fusion for 3D reconstruction[J]. Sensors, 2024, 24(7): 2033. doi: 10.3390/s24072033.
    [88] RODRIGUEZ-GARCIA B, RAMÍREZ-SANZ J M, MIGUEL-ALONSO I, et al. Enhancing learning of 3D model unwrapping through virtual reality serious game: Design and usability validation[J]. Electronics, 2024, 13(10): 1972. doi: 10.3390/electronics13101972.
    [89] KAVALIAUSKAS P, FERNANDEZ J B, MCGUINNESS K, et al. Automation of construction progress monitoring by integrating 3D point cloud data with an IFC-based BIM model[J]. Buildings, 2022, 12(10): 1754. doi: 10.3390/buildings12101754.
    [90] XU Yusheng and STILLA U. Toward building and civil infrastructure reconstruction from point clouds: A review on data and key techniques[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2857–2885. doi: 10.1109/JSTARS.2021.3060568.
    [91] JHONG S Y, CHEN Y Y, HSIA C H, et al. Density-aware and semantic-guided fusion for 3-D object detection using LiDAR-camera sensors[J]. IEEE Sensors Journal, 2023, 23(18): 22051–22063. doi: 10.1109/JSEN.2023.3302314.
    [92] LUO Zhipeng, ZHOU Changqing, PAN Liang, et al. Exploring point-BEV fusion for 3D point cloud object tracking with transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(9): 5921–5935. doi: 10.1109/TPAMI.2024.3373693.
    [93] LIU Jianan, ZHAO Qiuchi, XIONG Weiyi, et al. SMURF: Spatial multi-representation fusion for 3D object detection with 4D imaging radar[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 799–812. doi: 10.1109/TIV.2023.3322729.
    [94] HAO Ruidong, WEI Zhongwei, HE Xu, et al. Robust point cloud registration network for complex conditions[J]. Sensors, 2023, 23(24): 9837. doi: 10.3390/s23249837.
    [95] BAYRAK O C, MA Zhenyu, MARIAROSARIA FARELLA E, et al. Operationalize large-scale point cloud classification: Potentials and challenges[C]. EGU General Assembly Conference Abstracts 2024, Vienna, Austria, 2024: 10034. doi: 10.5194/egusphere-egu24-10034.
    [96] SHAN Shuo, LI Chenxi, WANG Yiye, et al. A deep learning model for multi-modal spatio-temporal irradiance forecast[J]. Expert Systems with Applications, 2024, 244: 122925. doi: 10.1016/j.eswa.2023.122925.
    [97] QIAN Jiaming, FENG Shijie, TAO Tianyang, et al. Real-time 3D point cloud registration[C]. SPIE 11205, Seventh International Conference on Optical and Photonic Engineering, Phuket, Thailand, 2019: 495–500. doi: 10.1117/12.2547865.
    [98] SHI Fengyuan, ZHENG Xunjiang, JIANG Lihui, et al. Fast point cloud registration algorithm using parallel computing strategy[J]. Journal of Physics: Conference Series, 2022, 2235(1): 012104. doi: 10.1088/1742-6596/2235/1/012104.
    [99] LUO Yukui. Securing FPGA as a shared cloud-computing resource: Threats and mitigations[D]. [Ph.D. dissertation], Northeastern University, 2023.
    [100] WANG Laichao, LU Weiding, TIAN Yuan, et al. 6D object pose estimation with attention aware Bi-gated fusion[C]. The 30th International Conference on Neural Information Processing, Changsha, China, 2024: 573–585. doi: 10.1007/978-981-99-8082-6_44.
    [101] HONG Jiaxin, ZHANG Hongbo, LIU Jinghua, et al. A transformer-based multi-modal fusion network for 6D pose estimation[J]. Information Fusion, 2024, 105: 102227. doi: 10.1016/j.inffus.2024.102227.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-24
  • 修回日期:  2025-06-03

目录

    /

    返回文章
    返回