基于合成孔径雷达的信息超表面无源通信技术

李华 刘开雨 邓云凯 李镇宁 罗超 李霁晨 任韬宇 陈峣 徐开江

李华, 刘开雨, 邓云凯, 等. 基于合成孔径雷达的信息超表面无源通信技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24228
引用本文: 李华, 刘开雨, 邓云凯, 等. 基于合成孔径雷达的信息超表面无源通信技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24228
LI Hua, LIU Kaiyu, DENG Yunkai, et al. Information metasurface technology-enabled integrated passive wireless communication system based on synthetic aperture radar[J]. Journal of Radars, in press. doi: 10.12000/JR24228
Citation: LI Hua, LIU Kaiyu, DENG Yunkai, et al. Information metasurface technology-enabled integrated passive wireless communication system based on synthetic aperture radar[J]. Journal of Radars, in press. doi: 10.12000/JR24228

基于合成孔径雷达的信息超表面无源通信技术

DOI: 10.12000/JR24228 CSTR: 32380.14.JR24228
基金项目: 中国科学院空天信息创新研究院项目(E1H31603)
详细信息
    作者简介:

    李 华,博士,主要研究方向为雷达通信一体化、雷达信号处理、先进电磁材料

    刘开雨,正高级工程师,硕士生导师,主要研究方向为星载合成孔径雷达载荷研制、人工电磁材料SAR应用等

    邓云凯,特聘研究员,博士生导师,主要研究方向为星载成像雷达系统设计、成像基础理论及微波遥感理论等

    李镇宁,助理研究员,主要研究方向为星载合成孔径雷达射频系统、可重构智能超表面与信号处理

    罗 超,助理研究员,主要研究方向为SAR射频微系统、星载SAR载荷中央电子设备

    李霁晨,助理研究员,主要研究方向为星载SAR射频综合系统、电磁场与微波技术

    任韬宇,助理研究员,主要研究方向为电磁场与微波技术、SAR天线技术

    陈 峣,助理研究员,主要研究方向为雷达系统、射频电路技术

    徐开江,副研究员,主要研究方向为电磁场与微波技术、计算电磁学和SAR相控阵天线技术

    通讯作者:

    刘开雨 liuky@aircas.ac.cn

  • 责任主编:徐华平 Corresponding Editor: XU Huaping
  • 中图分类号: TN929.5

Information Metasurface Technology-enabled Integrated Passive Wireless Communication System Based on Synthetic Aperture Radar

Funds: The Aerospace Information Research Institute, Chinese Academy of Sciences Project (E1H31603)
More Information
  • 摘要: 卫星通信与星载合成孔径雷达(SAR)遥感探测的一体化技术旨在融合通信与遥感功能,实现数据传输与遥感成像的同步进行,以满足对高效、隐蔽和安全信息传输的需求,提升系统的多用途能力。然而,由于二者在波形特性、收发器设计及信号处理算法等方面存在显著差异,实现星载通信与遥感一体化系统面临诸多挑战。该研究提出了一种基于信息超表面技术的无源无线通信系统,结合SAR回波调制方法,创新性地实现了地星通信与星载SAR遥感探测的深度融合。该系统通过精确调制其SAR散射回波参数,在维持SAR遥感探测质量约束条件下实现了无源无线通信功能。在此基础上,利用电磁反向散射特性替代主动发射机制,有效保障了通信链路的电磁隐蔽性与信息安全特性。场景仿真实验与星载SAR数据实验结果验证了系统的可行性与有效性。实验结果表明,在兼容传统SAR波形体制的前提下,本系统成功实现了地星数据传输与星载SAR成像的同步运行。该研究的核心目标是推动星载SAR遥感探测系统与无线通信技术的深度融合,旨在实现频谱资源的高效利用,并探索如何将信息超表面技术有效应用于通信与遥感一体化系统中,而为该领域提供新的研究视角与技术潜力。

     

  • 图  1  基于星载SAR系统的信息超表面联合无源无线通信系统

    Figure  1.  Passive communication system based on information Metasurface for SAR

    图  2  信息超表面的不同工作模式

    Figure  2.  Different operating modes of the information Metasurface

    图  3  基于信息超表面的无线通信系统的通信响应的几何模型

    Figure  3.  Geometric model of communication response for information metasurface-based wireless communication systems

    图  4  信息超表面点目标散射的SAR LFM信号的频谱及其对应的调制相位

    Figure  4.  Spectrum of SAR LFM signal scattered by information Metasurface point targets and corresponding modulation phases

    图  5  1-bit可编程的时空编码信息超表面

    Figure  5.  1-bit programmable spatiotemporal encoding information metasurface

    图  6  C波段宽带信息超表面单元电场分布(@6 GHz)

    Figure  6.  Electric field distribution of C-band information metasurface unit (@6 GHz)

    图  7  C波段宽带信息超表面单元

    Figure  7.  C-band broadband information metasurface unit

    图  8  模拟退火算法优化流程图

    Figure  8.  Flowchart of the simulated annealing algorithm optimization

    图  9  不同编码的C波段信息超表面远场辐射特性(@6 GHz)

    Figure  9.  Far-field radiation characteristics of C-band information metasurface with different encodings (@6 GHz)

    图  10  目标的分布

    Figure  10.  Target distribution

    图  11  经过信息超表面调制的点目标P5的分析

    Figure  11.  Analysis of point target P5 modulated by information metasurface

    图  12  未经调制的点目标P1的分析

    Figure  12.  Analysis of unmodulated point target P1

    图  14  不同强度的SAR散射背景场景图像

    Figure  14.  SAR scattering background scene images with different intensities

    图  15  通信系统平台的非理想抖动情况

    Figure  15.  Non-ideal jitter conditions of the communication system platform

    图  16  通信系统平台非理想抖动对通信性能的影响分析

    Figure  16.  Analysis of the impact of non-ideal jitter on communication system performance

    图  17  高分3号SAR数据仿真验证

    Figure  17.  Simulation verification of Gaofen-3 SAR data

    图  18  星载SAR数据验证结果

    Figure  18.  Satellite-based SAR data validation results

    表  1  不同编码的C波段信息超表面散射系数幅值和相位

    Table  1.   Scattering coefficient magnitude and phase of C-band information metasurface with different encodings

    编码序列 幅值(dB) 相位(°)
    11111111111111 26.25 187
    0111111…1111110 24.33 177
    0001110…0111000 15.27 69
    0111011…0111110 19.89 51
    0000000…0000000 32.92 0.1
    下载: 导出CSV

    表  2  高分-3卫星轨道参数

    Table  2.   Orbital parameters of Gaofen-3 satellite

    参数 数值
    偏心率 0.0015
    升交点
    倾角 98.4°
    半长轴 7126.4 km
    近地点俯角 270°
    下载: 导出CSV

    表  3  高分3号卫星雷达系统参数

    Table  3.   SAR system parameters of Gaofen-3 satellite

    参数 数值
    波长 5.55 cm
    传输带宽 120 MHz
    采样率 133.33 MHz
    孔径中心斜视角
    中心观测角 32.57°
    等效地面速度 6735.52 m/s
    标称多普勒质心 16.857 kHz
    脉冲重复频率 1.996 kHz
    场景中心分辨率(距离 × 方位) 2.5 m × 3.0 m
    下载: 导出CSV

    表  4  不同相位编码模式下点目标成像指标

    Table  4.   Imaging metrics of point targets under different phase encoding modes

    相位编码模式 方位向 距离向
    IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB)
    图13(a) 3.00 –13.26 –10.15 2.51 –13.26 –10.10
    图13(b) 3.00 –13.26 –10.15 2.51 –13.26 –10.10
    图13(c)
    图13(d)
    图13(e) 3.03 –13.25 –9.58 2.54 –12.34 –9.46
    下载: 导出CSV

    表  5  不同SAR散射背景下的系统通信性能分析结果

    Table  5.   System communication analysis for different SAR scattering backgrounds

    场景类型 RCS均值($ {\sigma _{{\text{env}}}} $) BER1 $ {\varGamma _{{\text{com1}}}} $ $ {P_{{\text{clutter}}}}/{{P_{\inf 1}}} $ BER2 $ {\varGamma _{{\text{com2}}}} $ $ P_{{\text{clutter}}}/{{P_{\inf 2}}} $
    海洋区域(中国南海) –7.4 dBsm 0.17% 1.117 30.15 \ \ \
    城市区域(北京朝阳) 14.7 dBsm 5.83% 0.103 299.46 2.77% 0.649 122.70
    森林区域(海南雨林) 2.2 dBsm 1.08% 0.931 34.73 0.89% 1.022 31.50
    下载: 导出CSV
  • [1] ULABY F T and LONG D D. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor, USA: University of Michigan Press, 2014: 65–72.
    [2] VILLANO M, KRIEGER G, JÄGER M, et al. Staggered SAR: Performance analysis and experiments with real data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6617–6638. doi: 10.1109/TGRS.2017.2731047.
    [3] CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217319. doi: 10.1109/TGRS.2023.3310613.
    [4] JIN Guodong, LIU Kaiyu, LIU Dacheng, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1735–1746. doi: 10.1109/TGRS.2019.2948219.
    [5] 李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5): 769–779. doi: 10.11947/j.AGCS.2023.20220050.

    LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interfero-metric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 769–779. doi: 10.11947/j.AGCS.2023.20220050.
    [6] HUBER S, DE ALMEIDA F Q, VILLANO M, et al. Tandem-L: A technical perspective on future spaceborne SAR sensors for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4792–4807. doi: 10.1109/TGRS.2018.2837673.
    [7] CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266.
    [8] SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343.
    [9] HAN Liang and WU Ke. Joint wireless communication and radar sensing systems - State of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450.
    [10] YOUNIS M, FISCHER C, and WIESBECK W. Digital beamforming in SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1735–1739. doi: 10.1109/TGRS.2003.815662.
    [11] CURRIE A and BROWN M A. Wide-swath SAR[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(2): 122–135. doi: 10.1049/ip-f-2.1992.0016.
    [12] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [13] JACYNA G M, FELL B, and MCLEMORE D. A high-level overview of fundamental limits studies for the DARPA SSPARC program[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 3558–3561. doi: 10.1109/RADAR.2016.7485100.
    [14] CHIRIYATH A R, PAUL B, and BLISS D W. Joint radar-communications information bounds with clutter: The phase noise menace[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 2256–2260. doi: 10.1109/RADAR.2016.7485311.
    [15] RICHMOND C D, BASU P, LEARNED R E, et al. Performance bounds on cooperative radar and communication systems operation[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1887–1891. doi: 10.1109/RADAR.2016.7485101.
    [16] KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148.
    [17] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561.
    [18] PENDRY J B, SCHURIG D, and SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782. doi: 10.1126/science.1125907.
    [19] WEI Menglin, ZHAO Hanting, GALDI V, et al. Metasurface-enabled smart wireless attacks at the physical layer[J]. Nature Electronics, 2023, 6(8): 610–618. doi: 10.1038/s41928-023-01011-0.
    [20] ENGHETA N and ZIOLKOWSKI R W. Metamaterials: Physics and Engineering Explorations[M]. Hoboken, USA: Wiley, 2006: 155–173.
    [21] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
    [22] WANG Xin, HAN Jiaqi, LI Guanxuan, et al. High-performance costefficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface[J]. Nature Communications, 2023, 14(1): 6002. doi: 10.1038/s41467-023-41763-z.
    [23] YANG Bo, CHEN Xiaojie, CHU Jie, et al. A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4951–4959. doi: 10.1109/TMTT.2020.3007187.
    [24] ALALI B, ZELENCHUK D, and FUSCO V. A 2D reflective metasurface augmented Luneburg lens antenna for 5G communications[C]. 2022 International Workshop on Antenna Technology, Dublin, Ireland, 2022: 136–138. doi: 10.1109/iWAT54881.2022.9811041.
    [25] LIANG Qiuyan and LAU B K. Beam reconfigurable reflective metasurface for indoor wireless communications[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Singapore, Singapore, 2021: 4358–4359. doi: 10.1109/APS/URSI47566.2021.9703707.
    [26] ZHANG Lei, CHEN Xiaoqing, CHENG Qiang, et al. Space-time-coding digital metasurfaces for new-architecture wireless communications[C]. 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 684–688. doi: 10.23919/EuCAP53622.2022.9769603.
    [27] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [28] WATTS S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3303–3317. doi: 10.1109/TAES.2012.6324707.
    [29] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Joint wireless communication and high resolution SAR imaging using airborne mimo radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2511–2514. doi: 10.1109/IGARSS.2019.8897826.
    [30] PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2007: 273–301.
    [31] GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005: 157–166.
    [32] RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2014: 314–333.
    [33] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [34] DAI Junyan, TANG Wankai, CHEN Mingzheng, et al. Wireless communication based on information metasurfaces[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1493–1510. doi: 10.1109/TMTT.2021.3054662.
    [35] 丁昊, 朱晨光, 刘宁波, 等. 高海况条件下海面漂浮小目标特征提取与分析[J]. 海军航空大学学报, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.

    DING Hao, ZHU Chenguang, LIU Ningbo, et al. Feature extraction and analysis of small floating targets in high sea conditions[J]. Journal of Naval Aviation University, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.
    [36] BROSCHAT S L. Reflection loss from a "Pierson-Moskowitz" sea surface using the nonlocal small slope approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 632–634. doi: 10.1109/36.739134.
    [37] SHI Shuo, ZHANG Heng, DENG Yunkai, et al. Increase the coherent processing interval for SAR focusing of maneuvering ships by data resampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5210322. doi: 10.1109/TGRS.2024.3390790.
    [38] WANG Peng, LI Zhenning, WEI Zhaohui, et al. Space-time-coding digital metasurface element design based on state recognition and mapping methods with CNN-LSTM-DNN[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 4962–4975. doi: 10.1109/TAP.2024.3349778.
    [39] WANG Di, YIN Lizheng, HUANG Tiejun, et al. Design of a 1 bit broadband space-time-coding digital metasurface element[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 611–615. doi: 10.1109/LAWP.2020.2973424.
    [40] CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 217–219.
    [41] ROSENBERG L, OUELLETTE J D, and DOWGIALLO D J. Passive bistatic sea clutter statistics from spaceborne illuminators[J]. IEEE Transactions on Aerospace and Electronic Systems, 56(5): 3971–3984.
    [42] ARMSTRONG B C and GRIFFITHS H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F (Radar and Signal Processing), 1991, 138(2): 139–152. doi: 10.1049/ip-f-2.1991.0020.
    [43] TULINO A M and VERDÚ S. Random matrix theory and wireless communications[J]. Foundations and Trends® in Communications and Information Theory, 2004, 1(1): 1–182. doi: 10.1561/0100000001.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 修回日期:  2025-05-08

目录

    /

    返回文章
    返回