联合干扰感知与参数估计的抗间歇采样转发干扰方法

王荣清 谢旌阳 田彪 徐世友 陈曾平

王荣清, 谢旌阳, 田彪, 等. 联合干扰感知与参数估计的抗间歇采样转发干扰方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24153
引用本文: 王荣清, 谢旌阳, 田彪, 等. 联合干扰感知与参数估计的抗间歇采样转发干扰方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24153
WANG Rongqing, XIE Jingyang, TIAN Biao, et al. Integrated jamming perception and parameter estimation method for anti-interrupted sampling repeater jamming[J]. Journal of Radars, in press. doi: 10.12000/JR24153
Citation: WANG Rongqing, XIE Jingyang, TIAN Biao, et al. Integrated jamming perception and parameter estimation method for anti-interrupted sampling repeater jamming[J]. Journal of Radars, in press. doi: 10.12000/JR24153

联合干扰感知与参数估计的抗间歇采样转发干扰方法

DOI: 10.12000/JR24153
基金项目: 国家自然科学基金(62371477),广东省科技厅项目(2019ZT08X751),深圳市科创局项目(KQTD20190929172704911)
详细信息
    作者简介:

    王荣清,硕士生,主要研究方向为雷达波形设计、干扰对抗

    谢旌阳,博士生,主要研究方向为通信感知一体化、多功能波形设计与处理

    田 彪,博士,副教授,博士生导师,主要研究方向为ISAR成像、雷达波形设计、雷达目标识别等

    徐世友,博士,教授,博士生导师,主要研究方向为宽带雷达成像、自动目标识别、信息融合等

    陈曾平,博士,教授,博士生导师,主要研究方向为空间态势感知、软件化雷达探测、宽带成像识别等

    通讯作者:

    田彪 tianb28@mail.sysu.edu.cn

  • 责任主编:李永祯 Corresponding Editor: LI Yongzhen
  • 中图分类号: TN972

Integrated Jamming Perception and Parameter Estimation Method for Anti-Interrupted Sampling Repeater Jamming

Funds: The National Natural Science Foundation of China (62371477), Guangdong Science and Technology Program (2019ZT08X751), Shenzhen Science and Technology Program (KQTD20190929172704911)
More Information
  • 摘要: 间歇采样转发干扰是一种脉内相干干扰,其形成的电子假目标与真实目标高度相似,对雷达目标检测造成了严重威胁。传统抗干扰方法较为被动,且没有考虑到干扰机策略的变化,在干扰抑制时难免会出现干扰残留以及信号损失的情况。为了提升雷达抗干扰性能,该文提出一种联合“干扰感知-参数估计-干扰抑制”的抗干扰方案。首先,利用双向-双滑窗脉冲沿检测和滑动截断匹配滤波方法,准确提取接收回波中的干扰分量并估计采样时长和周期等参数。在此基础上,重构出干扰信号分量并将其从回波中剔除,从而确保准确有效的目标检测。仿真实验表明,所提方法在不损失信号能量的情况下,对于不同调制方式下的间歇采样转发干扰都具有较好的抑制效果。当干噪比为9 dB时,干扰抑制后信干比提升大于33 dB,保证了雷达稳健的抗干扰性能。

     

  • 图  1  ISRJ产生原理

    Figure  1.  The generation principle of ISRJ

    图  2  ISRJ参数估计与抑制流程

    Figure  2.  The process of ISRJ parameter estimation and suppression

    图  3  双向-双滑窗脉冲检测示意图

    Figure  3.  Schematic diagram of bidirectional dual-window pulse edge detection

    图  4  STMF工作流程

    Figure  4.  The workflow of STMF

    图  5  联合抗ISRJ方法流程图

    Figure  5.  The flow chart of the proposed joint anti-ISRJ method

    图  6  仿真雷达回波与ISPRJ

    Figure  6.  Simulated radar echo with ISPRJ

    图  7  ISPRJ脉冲检测与参数估计结果

    Figure  7.  Pulse edge detection and parameter estimation results of echo with ISPRJ

    图  8  参数估计性能曲线

    Figure  8.  The curve of parameter estimation performance

    图  9  LFM波形干扰抑制前后回波时频分布情况

    Figure  9.  TFD of received echo before and after anti-jamming of LFM waveform

    图  10  LFM波形干扰抑制前后回波脉压结果

    Figure  10.  PC results of received echo before and after anti-jamming of LFM waveform

    图  11  干扰抑制后假目标脉压结果图

    Figure  11.  PC results of false target after anti-jamming

    图  12  性能指标随参数估计误差变化曲线

    Figure  12.  The variation curves of performance index with parameter estimation error

    图  13  LFM波形不同方法干扰抑制后脉压结果对比图

    Figure  13.  Comparison of PC results after anti-jamming by different methods of LFM waveform

    图  14  LFM波形下SJRIF随JSR变化曲线

    Figure  14.  The variation curves of SJRIF with JSR for LFM waveform

    图  15  LFM波形下SLR随JSR变化曲线

    Figure  15.  The variation curves of SLR with JSR for LFM waveform

    图  16  捷变波形干扰抑制前后回波时频分布情况

    Figure  16.  TFD of received echo before and after anti-jamming of agile waveform

    图  17  捷变波形干扰抑制前后回波脉压结果

    Figure  17.  PC results of received echo before and after anti-jamming of agile waveform

    图  18  捷变波形下SJRIF随JSR变化曲线

    Figure  18.  The variation curves of SJRIF with JSR for agile waveform

    图  19  捷变波形下SLR随JSR变化曲线

    Figure  19.  The variation curves of SLR with JSR for agile waveform

    图  20  相位编码波形干扰抑制前后回波脉压结果

    Figure  20.  PC results of received echo before and after anti-jamming of phase-coded waveform

    图  21  相位编码波形下性能指标随JSR变化曲线

    Figure  21.  The variation curves of performance index with JSR for phase-coded waveform

    表  1  雷达与目标参数

    Table  1.   Radar and target parameters

    参数 数值
    脉冲宽度T 24 μs
    信号带宽B 36 MHz
    采样率${f_{\text{s}}}$ 72 MHz
    脉冲重复周期${\text{PRI}}$ 100 μs
    中心载频${f_{\text{c}}}$ 3 GHz
    目标距离R 9 km
    下载: 导出CSV

    表  2  干扰机参数

    Table  2.   Jammer parameters

    参数 数值
    干扰转发时延${\tau _{\text{J}}}$ 0 μs
    干扰采样时长${T_{\text{I}}}$ 2 μs
    干扰采样周期${T_{\text{J}}}$ 8 μs
    转发次数M 3
    信噪比SNR 3 dB
    干信比JSR 6 dB
    下载: 导出CSV

    表  3  ISRJ参数估计结果

    Table  3.   The parameters estimation results of ISRJ

    参数 参数估计值 AE
    文献[23]方法 所提方法 文献[23]方法 所提方法
    PWJ (μs) 5.8972 6.0089 0.1028 0.0089
    6.0953 6.0075 0.0953 0.0075
    6.1041 6.0097 0.1041 0.0097
    ${\bar T_{\text{I}}}$ (μs) 1.9018 2.0125 0.0982 0.0125
    ${N_M}$ 3 3 0 0
    下载: 导出CSV
  • [1] ARIK M and AKAN O B. Enabling cognition on electronic countermeasure systems against next-generation radars[C]. MILCOM 2015-2015 IEEE Military Communications Conference, Tampa, USA, 2015: 1103–1108. doi: 10.1109/MILCOM.2015.7357593.
    [2] HEAGNEY C P. Digital radio frequency memory synthetic instrument enhancing US navy automated test equipment mission[J]. IEEE Instrumentation & Measurement Magazine, 2018, 21(4): 41–63. doi: 10.1109/MIM.2018.8423745.
    [3] LEWIS G K, BAHL I J, GRIFFIN E L, et al. GaAs MMIC’s for digital radio frequency memory (DRFM) subsystems[J]. IEEE Transactions on Microwave Theory and Techniques, 1987, 35(12): 1477–1485. doi: 10.1109/TMTT.1987.1133878.
    [4] WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F: Information Sciences, 2007, 50(1): 113–123. doi: 10.1007/s11432-007-2017-y.
    [5] OLIVIER K, CILLIERS J E, and DU PLESSIS M. Design and performance of wideband DRFM for radar test and evaluation[J]. Electronics Letters, 2011, 47(14): 824–825. doi: 10.1049/el.2011.0362.
    [6] 张建中, 穆贺强, 文树梁, 等. 基于脉内LFM-Costas频率步进的抗间歇采样干扰方法[J]. 系统工程与电子技术, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03.

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling jamming method based on intra-pulse LFM-Costas frequency stepping[J]. Systems Engineering and Electronics, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03.
    [7] ZHANG Yang, YU Lei, and WEI Yinsheng. Interrupted sampling repeater jamming countermeasure technology based on random interpulse frequency coding LFM signal[J]. Digital Signal Processing, 2022, 131: 103755. doi: 10.1016/j.dsp.2022.103755.
    [8] 周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06.

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06.
    [9] ZHANG Jiaxiang and ZHOU Chao. Interrupted sampling repeater jamming suppression method based on hybrid modulated radar signal[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–4. doi: 10.1109/ICSIDP47821.2019.9173093.
    [10] ZHANG Yang, WEI Yinsheng, and YU Lei. Interrupted sampling repeater jamming recognition and suppression based on phase-coded signal processing[J]. Signal Processing, 2022, 198: 108596. doi: 10.1016/j.sigpro.2022.108596.
    [11] 刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001.

    LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001.
    [12] LIU Zhixing, QUAN Yinghui, DU Siyu, et al. A novel ECCM scheme against interrupted-sampling repeater jamming using intra-pulse dual-parameter agile waveform[J]. Digital Signal Processing, 2022, 129: 103652. doi: 10.1016/j.dsp.2022.103652.
    [13] ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27: 1610–1614. doi: 10.1109/LSP.2020.3021667.
    [14] ZHOU Kai, LI Dexin, QUAN Sinong, et al. SAR waveform and mismatched filter design for countering interrupted-sampling repeater jamming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214514. doi: 10.1109/TGRS.2021.3107328.
    [15] WANG Fulai, LI Nanjun, PANG Chen, et al. Complementary sequences and receiving filters design for suppressing interrupted sampling repeater jamming[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4022305. doi: 10.1109/LGRS.2022.3156164.
    [16] 盖季妤, 姜维, 张凯翔, 等. 基于差分特征的间歇采样转发干扰辨识与抑制方法[J]. 雷达学报, 2023, 12(1): 186–196. doi: 10.12000/JR22058.

    GAI Jiyu, JIANG Wei, ZHANG Kaixiang, et al. A method for interrupted-sampling repeater jamming identification and suppression based on differential features[J]. Journal of Radars, 2023, 12(1): 186–196. doi: 10.12000/JR22058.
    [17] CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658.
    [18] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080.

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080.
    [19] 张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM时频分析的抗间歇采样干扰方法[J]. 北京理工大学学报, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202.

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on stepped LFM joint time-frequency analysis[J]. Transactions of Beijing Institute of Technology, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202.
    [20] 杜思予, 刘智星, 吴耀君, 等. 频率捷变波形联合时频滤波器抗间歇采样转发干扰[J]. 系统工程与电子技术, 2023, 45(12): 3819–3827. doi: 10.12305/j.issn.1001-506X.2023.12.11.

    DU Siyu, LIU Zhixing, WU Yaojun, et al. Frequency agility waveform combined with time-frequency filter to suppress interrupted-sampling repeater jamming[J]. Systems Engineering and Electronics, 2023, 45(12): 3819–3827. doi: 10.12305/j.issn.1001-506X.2023.12.11.
    [21] ZHENG Hao, JIU Bo, and LIU Hongwei. Waveform design based ECCM scheme against interrupted sampling repeater jamming for wideband MIMO radar in multiple targets scenario[J]. IEEE Sensors Journal, 2022, 22(2): 1652–1669. doi: 10.1109/JSEN.2021.3131491.
    [22] WEI Zhenhua, LIU Zhen, PENG Bo, et al. ECCM scheme against interrupted sampling repeater jammer based on parameter-adjusted waveform design[J]. Sensors, 2018, 18(4): 1141. doi: 10.3390/s18041141.
    [23] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114.
    [24] LU Lu and GAO Meiguo. A truncated matched filter method for interrupted sampling repeater jamming suppression based on jamming reconstruction[J]. Remote Sensing, 2022, 14(1): 97. doi: 10.3390/rs14010097.
    [25] 周超, 刘泉华, 曾涛. DRFM间歇采样转发式干扰辨识算法研究[J]. 信号处理, 2017, 33(7): 911–917. doi: 10.16798/j.issn.1003-0530.2017.07.002.

    ZHOU Chao, LIU Quanhua, and ZENG Tao. Research on DRFM repeater jamming recognition[J]. Journal of Signal Processing, 2017, 33(7): 911–917. doi: 10.16798/j.issn.1003-0530.2017.07.002.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  36
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-07
  • 修回日期:  2024-09-12
  • 网络出版日期:  2024-10-11

目录

    /

    返回文章
    返回