基于涡旋电磁波新体制的雷达前视三维成像

潘浩然 马晖 胡敦法 刘宏伟

潘浩然, 马晖, 胡敦法, 等. 基于涡旋电磁波新体制的雷达前视三维成像[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24123
引用本文: 潘浩然, 马晖, 胡敦法, 等. 基于涡旋电磁波新体制的雷达前视三维成像[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24123
PAN Haoran, MA Hui, HU Dunfa, et al. Novel forward-looking three-dimensional imaging based on vortex electromagnetic wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR24123
Citation: PAN Haoran, MA Hui, HU Dunfa, et al. Novel forward-looking three-dimensional imaging based on vortex electromagnetic wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR24123

基于涡旋电磁波新体制的雷达前视三维成像

doi: 10.12000/JR24123
基金项目: 国家重点研发计划(2022YFB3902400),国家自然科学基金面上基金(62471362),国家自然基金青年基金(61901344),博士后创新人才支持计划(BX20180239),博士后基金(2019M653562),高等学校学科创新引智计划(B18039)
详细信息
    作者简介:

    潘浩然,博士生,主要研究方向为涡旋电磁新体制雷达与雷达信号处理

    马 晖,博士,副教授,主要研究方向为雷达成像、新体制雷达、智能雷达、雷达信号处理

    胡敦法,硕士生,主要研究方向为电磁涡旋波新体制雷达、雷达成像

    刘宏伟,博士,教授,主要研究方向为雷达目标识别、认知探测、网络化协同探测、雷达智能化

    通讯作者:

    马晖 h.ma@xidian.edu.cn

  • 责任主编:刘康 Corresponding Editor: LIU Kang

Novel Forward-looking Three-Dimensional Imaging Based on Vortex Electromagnetic Wave Radar

Funds: The National Key R&D Program of China (2022YFB3902400), The National Natural Science Foundation of China under Grant (62471362), The National Nature Fund Youth Fund (61901344), The Postdoctoral Innovative Talent Support Program (BX20180239), The Postdoctoral Fund (2019M653562), The Discipline Innovation and Talent Introduction Program of Colleges and Universities (B18039)
More Information
  • 摘要: 涡旋电磁波具有独特的波前相位调制特性,其作为一种新的雷达发射端分集模式,可实现目标雷达截面积 (RCS)分集、提升信号与信息处理维度和性能,其探测与成像性能在多种雷达体制中得到了验证。该文针对前视雷达成像的应用背景,基于均匀圆阵发射与圆阵中心单天线接收的收发体制,在建立了电磁涡旋前视雷达信号模型与成像模型的基础上,提出了一种分时多模态扫描的成像方法,利用多模态涡旋电磁波在不同俯仰角的幅度差异性和在不同方位角的相位差异性,以及雷达与目标相对运动产生的多普勒效应,提出了改进的后向投影-距离多普勒算法,实现了目标三维成像。由于涡旋电磁波的能量发散特点,随着俯仰角增大,高模态方向图增益急剧下降,该文所提方法通过对多个模态在空域能量分布的有效利用,在较大视场角下具有较高的稳定性。基于点目标成像结果,验证了在多模态涡旋波覆盖的较大视场范围内,目标成像结果的归一化等效增益在低俯仰角与高俯仰角处基本相当。所提方法通过对飞机目标的实验验证,根据成像结果可较为准确地重构目标的三维结构。

     

  • 图  1  涡旋雷达前视成像几何模型

    Figure  1.  Geometry of vortex radar forward-looking imaging

    图  2  涡旋雷达前视成像坐标系

    Figure  2.  The coordinate system of vortex radar forward-looking imaging

    图  3  分时多模态发射模式示意图

    Figure  3.  Procedure of time division multiple modes

    图  4  成像算法处理过程

    Figure  4.  Flowchart of the proposed imaging algorithm

    图  5  三维成像网络

    Figure  5.  Gridding the imaging scenario

    图  6  网络变换关系示意图

    Figure  6.  The grid projection of range and elevation

    图  7  阵元合成效果图

    Figure  7.  Rendering of array synthesis

    图  8  贝塞尔函数幅度调制影响

    Figure  8.  Amplitude modulation of Bessel functions

    图  9  归一化信号处理增益变化图(以俯仰角θ=0为参考点进行归一化)

    Figure  9.  Signal processing gain curves with different elevation (based on zero angle, normalized signal processing gain )

    图  10  三维点目标成像结果对比图

    Figure  10.  Three-dimensional profiles of the target imaging results

    图  13  目标2不同维度的成像结果($ \theta =0.15\mathrm{\pi } $)

    Figure  13.  Point target2 imaging results in different dimensions ($ \theta =0.15\mathrm{\pi } $)

    图  11  不同速度偏差-聚焦成像偏差曲线

    Figure  11.  Imaging bias with different velocity bias

    图  12  目标1不同维度的成像结果($ \theta =0.1\mathrm{\pi } $)

    Figure  12.  Point target 1 imaging results in different dimensions ($ \theta =0.1\mathrm{\pi } $)

    图  14  多目标不同维度的成像结果

    Figure  14.  Multi-object imaging results

    图  15  飞机目标实验场景照片

    Figure  15.  The scene of aircraft target experiment

    图  16  实测数据在不同模态下的脉压结果

    Figure  16.  Pulse pressure results of measured data with different modes

    图  17  飞机目标的三维成像图

    Figure  17.  Three-dimensional image of the aircraft target

    图  18  飞机目标三维成像的二维切面图

    Figure  18.  Aircraft target imaging results in different dimensions

    表  1  不同俯仰位置下信号处理增益变化

    Table  1.   Signal processing gain of different elevation

    俯仰角θ
    (rad)
    有效模态 输入信
    噪比(dB)
    输出信
    噪比(dB)
    归一化信号处理
    增益 (dB)
    0.00$\pi $ [0] 12.4140 52.3270 39.9130
    0.01$\pi $ [–2,2] 12.4140 52.3231 39.9091
    0.02$\pi $ [–4,4] 12.4140 52.3115 39.8975
    0.03$\pi $ [–6,6] 12.4140 52.2922 39.8782
    0.04$\pi $ [–8,8] 12.4140 52.2653 39.8513
    0.05$\pi $ [–10,10] 12.4140 52.2307 39.8167
    0.06$\pi $ [–12,12] 12.4140 52.1887 39.7747
    0.07$\pi $ [–14,14] 12.4140 52.1393 39.7253
    0.08$\pi $ [–16,16] 12.4140 52.0826 39.6686
    0.09$\pi $ [–18,18] 12.4140 52.0188 39.6048
    0.10$\pi $ [–20,20] 12.4140 51.9482 39.5342
    0.11$\pi $ [–23,23] 12.4133 51.8693 51.4341
    0.12$\pi $ [–25,25] 12.4010 51.7580 39.3570
    0.13$\pi $ [–27, 27] 12.2969 51.4341 39.1372
    0.14$\pi $ [–28, 28] 11.9384 50.5159 38.5775
    0.15$\pi $ [–30, 30] 11.7014 49.8458 38.1444
    0.16$\pi $ [–32, 32] 12.2512 51.0137 38.7625
    0.17$\pi $ [–34, 34] 12.2907 50.9907 38.7001
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数
    目标1的$R - \theta - \varphi $坐标(m, rad, rad) (300, 0.10$\pi $, 0.055$\pi $)
    目标2的$R - \theta - \varphi $坐标(m, rad, rad) (300, 0.15$\pi $, 0.055$\pi $)
    雷达UCA阵元数量N(个) 64
    UCA半径${r_a}$(m) 0.09
    信号载频${f_c}$(GHz) 35
    信号脉冲周期${T_p}$($ \text{μ}\text{s} $) 0.54
    带宽B (MHz) 300
    OAM范围 [–30, 30]
    下载: 导出CSV

    表  3  实测参数

    Table  3.   Experimental parameters

    参数
    飞机模型中心位置(m) 4.5
    飞机模型在XYZ上的跨度(m) (1.5, 0.08, 1.15)
    阵元数量N(个) 16
    UCA半径${r_a}$(m) 0.0615
    信号载频${f_c}$(GHz) 35.025
    信号脉冲周期${T_p}$($ \text{μ}\text{s} $) 0.54
    带宽B(MHz) 300
    OAM范围 [-7,7]
    下载: 导出CSV
  • [1] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Multichannel full-aperture azimuth processing for beam steering SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4761–4778. doi: 10.1109/TGRS.2012.2230267.
    [2] 宗竹林, 胡剑浩, 朱立东, 等. 编队卫星合成孔径雷达空时二维压缩感知成像[J]. 电波科学学报, 2012, 27(3): 626–636.

    ZONG Zhulin, HU Jianhao, ZHU Lidong, et al. Formation-flying small satellites SAR imaging algorithm using space-time compressive sensing[J]. Chinese Journal of Radio Science, 2012, 27(3): 626–636.
    [3] YANIK M E, WANG Dan, and TORLAK M. Development and demonstration of MIMO-SAR mmWave imaging testbeds[J]. IEEE Access, 2020, 8: 126019–126038. doi: 10.1109/ACCESS.2020.3007877.
    [4] YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161.
    [5] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review Applied, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
    [6] LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655.
    [7] 吕坤, 马晖, 刘宏伟. 基于涡旋电磁波体制的三维SAR成像方法[J]. 雷达学报, 2021, 10(5): 691–698. doi: 10.12000/JR21125.

    LYU Kun, MA Hui, and LIU Hongwei. Three-dimensional imaging using the electromagnetic vortex synthetic aperture radar[J]. Journal of Radars, 2021, 10(5): 691–698. doi: 10.12000/JR21125.
    [8] GONG Ting, CHENG Yongqiang, LI Xiang, et al. Micromotion detection of moving and spinning object based on rotational Doppler shift[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 843–845. doi: 10.1109/LMWC.2018.2858552.
    [9] 王建秋, 刘康, 王煜, 等. 涡旋电磁波雷达成像分辨力研究[J]. 雷达学报, 2021, 10(5): 680–690. doi: 10.12000/JR21054.

    WANG Jianqiu, LIU Kang, WANG Yu, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10(5): 680–690. doi: 10.12000/JR21054.
    [10] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013.

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013.
    [11] BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980.
    [12] JIANG Xuefeng, ZHAO Yufei, and ZHANG Chao. Capacity evaluation on the long-distance orbital angular momentum non-orthogonal transmission[C]. 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 2018: 1–4. doi: 10.1109/IEEE-IWS.2018.8400839.
    [13] FANG Yue, CHEN Jie, WANG Pengbo, et al. A novel image formation method for electromagnetic vortex SAR with orbital-angular-momentum[J]. Progress in Electromagnetics Research M, 2019, 82: 129–137. doi: 10.2528/PIERM19011704.
    [14] BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Synthetic aperture radar interferometry based on vortex electromagnetic waves[J]. IEEE Access, 2019, 7: 82693–82700. doi: 10.1109/ACCESS.2019.2908209.
    [15] 袁航, 倪嘉成, 荣楠, 等. 基于单频涡旋电磁波雷达的人体目标步态精细识别[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 39–45. doi: 10.3969/j.issn.1009-3516.2020.06.007.

    YUAN Hang, NI Jiacheng, RONG Nan, et al. Fine gait recognition of human target with single-frequency vortex electromagnetic wave radar[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 39–45. doi: 10.3969/j.issn.1009-3516.2020.06.007.
    [16] WANG Zhaji, SUN Guanqun, ZHANG Fangzheng, et al. Microwave-photonics-based vortex electromagnetic wave generation for high resolution radar imaging[C]. 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 2022: 1687–1690. doi: 10.1109/ACP55869.2022.10088880.
    [17] 袁铁柱. 涡旋电磁波在雷达成像中的应用研究[D]. [博士论文], 国防科学技术大学, 2017.

    YUAN Tiezhu. Research on radar imaging using electromagnetic vortex wave[D]. [Ph.D. dissertation], National University of Defense Technology, 2017.
    [18] MA Hui and LIU Hongwei. Waveform diversity-based generation of convergent beam carrying orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5487–5495. doi: 10.1109/TAP.2020.2981724.
    [19] LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253.
    [20] WANG Jianqiu, LIU Kang, LIU Hongyan, et al. 3-D object imaging method with electromagnetic vortex[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2000512. doi: 10.1109/TGRS.2021.3069914.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  23
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-09-02

目录

    /

    返回文章
    返回