U-Sodar:基于超声波雷达的非接触生命体征检测技术

黄帅铭 朱晓华 王武斌 赵恒 洪弘

黄帅铭, 朱晓华, 王武斌, 等. U-Sodar:基于超声波雷达的非接触生命体征检测技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24114
引用本文: 黄帅铭, 朱晓华, 王武斌, 等. U-Sodar:基于超声波雷达的非接触生命体征检测技术[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24114
HUANG Shuaiming, ZHU Xiaohua, WANG Wubin, et al. U-Sodar: Noncontact vital sign detection technology based on ultrasonic radar[J]. Journal of Radars, in press. doi: 10.12000/JR24114
Citation: HUANG Shuaiming, ZHU Xiaohua, WANG Wubin, et al. U-Sodar: Noncontact vital sign detection technology based on ultrasonic radar[J]. Journal of Radars, in press. doi: 10.12000/JR24114

U-Sodar:基于超声波雷达的非接触生命体征检测技术

DOI: 10.12000/JR24114
基金项目: 国家自然科学基金(62431013, 62301255, 62201259),江苏省自然科学基金(BK20220942, BK20220940),中央高校基本科研业务费专项资金(30923011026, 30923011006)
详细信息
    作者简介:

    黄帅铭,博士生,主要研究方向为生物医学传感和新体制雷达系统等

    朱晓华,博士,教授,主要研究方向为雷达系统、雷达信号理论以及数字信号处理等

    王武斌,学士,正高级工程师,主要研究方向为信号处理、目标识别等

    赵 恒,博士,讲师,主要研究方向为生物医学传感、非接触式生命体征探测以及雷达信号处理等

    洪 弘,博士,教授,主要研究方向为生物医学传感、语音信号处理以及雷达信号处理等

    通讯作者:

    赵恒 soniczhao@live.com

    洪弘 hongnju@njust.edu.cn

  • 责任主编:谢磊 Corresponding Editor: XIE Lei
  • 中图分类号: TN957

U-Sodar: Noncontact Vital Sign Detection Technology Based on Ultrasonic Radar

Funds: The National Natural Science Foundation of China (62431013, 62301255, 62201259), Natural Science Foundation of Jiangsu Province (BK20220942, BK20220940), Fundamental Research Funds for the Central Universities (30923011026, 30923011006)
More Information
  • 摘要: 全球老龄化趋势日益加剧,健康生活理念深入人心,居民对居家健康监测的需求也随之而来。为了减少健康监测对日常活动的影响,非接触式监测系统的需求量激增。然而,目前主流的检测方法存在隐私信任度低、电磁兼容性差和制造成本高等问题。对此,该文提出一种基于超声波雷达的非接触式生命体征信号测量系统——U-Sodar,包括一套基于3发4收MIMO架构的硬件和一套信号处理算法。其中U-Sodar本振采用分频技术,相位噪声低,检测精度高;接收机采用前端直接采样技术,在简化结构的同时有效减少外部噪声;发射采用可调PWM直接驱动,可发射多种超声波形,具备软件定义超声波系统特性。U-Sodar的信号处理算法采用信号弦长的图处理技术,利用图片滤波后重构的方法可在5 dB信噪比下实现信号相位的准确恢复。试验测试了U-Sodar系统的抗干扰性能与穿透性能,证明了超声穿透是依赖材料孔隙而非跨介质振动传导。并推导了给定信噪比与正确解调概率下的最小可测量位移。实际生命体征信号测量实验中,U-Sodar可分别在3.0 m和1.5 m距离内实现呼吸率和心率的准确测量,在1.0 m内可测得心跳波形。实验结果证明了U-Sodar超声波雷达在非接触式生命体征检测应用中的可行性及发展潜力。

     

  • 图  1  基于U-Sodar的人体生命体征信号测量示意图

    Figure  1.  Overview of U-Sodar vital signal monitoring system

    图  2  直流偏置导致相位解算错误示意图

    Figure  2.  Schematic of phase resolution error due to DC bias

    图  3  回波信号基带组成的星座图示意图

    Figure  3.  Constellation diagram depicting the baseband composition of the echo signal

    图  4  含噪信号在相位解调中的解调误差示意图

    Figure  4.  Schematic of demodulation error in phase demodulation of noise-containing signals

    图  5  给定信噪比与解调正确概率下的最小可测量相差图

    Figure  5.  The minimum measurable phase difference for a given SNR and probability of correct demodulation

    图  6  U-Sodar硬件系统原理图

    Figure  6.  Framework of U-Sodar hardware system

    图  7  换能器阵列图

    Figure  7.  Transducer array layout

    图  8  U-Sodar方向图测试场景布置

    Figure  8.  Arrangement of the test scene for U-Sodar directional diagram testing

    图  9  方向图测试结果

    Figure  9.  Test results of directional map

    图  10  采样复用时序图

    Figure  10.  Sampling multiplexing timing sequence diagram

    图  11  U-Sodar原型机

    Figure  11.  U-Sodar prototype

    图  12  U-Sodar信号处理流程图

    Figure  12.  Flowchart of U-Sodar signal processing

    图  13  弦长图算法流程图

    Figure  13.  Flowchart of the chord length graph algorithm

    图  14  频域加权的权值图

    Figure  14.  Weighting map for frequency domain weighting

    图  15  各通道测量静止墙面信号矢量图

    Figure  15.  Measurement of stationary wall signal vector diagram for each channel

    图  16  融合相位输出图

    Figure  16.  Fusion phase information output

    图  17  不同环境下性能对比

    Figure  17.  Performance comparison in different environments

    图  18  穿透性测试场景布置

    Figure  18.  Penetration test scenario

    图  19  U-Sodar对电机运动的测量结果

    Figure  19.  Results of U-Sodar measurements on motor movement

    图  20  不同信噪比信号处理结果对比

    Figure  20.  Comparison of signal processing results with different signal-to-noise ratios

    图  21  不同体动幅度模拟结果对比

    Figure  21.  Comparison of simulation results for different body movement distances

    图  22  基于U-Sodar的生命体征测量实验场景示意图

    Figure  22.  Schematic of the experimental setup for measuring vital signs with U-Sodar

    图  23  不同距离下呼吸测量结果

    Figure  23.  Breathing measurements at different distances

    图  24  不同距离心跳测量结果

    Figure  24.  Results of heartbeat measurements at different distances

    表  1  各类型非接触测量方案比较

    Table  1.   Comparing various types of non-contact measurement schemes

    类型 可见光/红外光 微波雷达 声学信号 U-Sodar
    隐私保护
    毫米级位移测量
    信号来向区分
    抗电磁干扰
    无电磁辐射
    穿透能力
    环境适应能力
    目前设备体积
    设备成本
    注:•为优秀,–为较差。
    下载: 导出CSV

    表  2  U-Sodar系统的关键芯片型号

    Table  2.   U-Sodar system key chip models

    芯片功能 芯片型号
    主控芯片 STM32F030F4P6
    发射驱动芯片 SRV8837
    接收放大器芯片 MS8051
    LDO电源芯片 RT9193
    逻辑门芯片 SN74LVC1G02DCKR
    USB串口转换芯片 CH340N
    收发换能器探头 TCT40-16
    下载: 导出CSV

    表  3  受试者信息

    Table  3.   Volunteer information

    受试者编号 性别 年龄 身高(cm) 体重(kg) BMI (kg/m2) 标识色
    1 26 173 60.0 20.0
    2 24 180 78.5 24.2
    3 23 178 71.0 22.4
    4 24 166 63.0 22.9 绿
    5 22 155 46.0 19.1
    注:根据中国BMI标准:≤18.4为偏瘦、18.5~23.9为正常、24.0~27.9为过重、≥28为肥胖。
    下载: 导出CSV
  • [1] United Nations. Ageing[EB/OL]. https://www.un.org/en/global-issues/ageing, 2024.
    [2] 民政部, 全国老龄办. 2022年度国家老龄事业发展公报[EB/OL]. https://www.gov.cn/lianbo/bumen/202312/P020231214405906944856.pdf, 2023.

    Ministry of Civil Affairs of China, National Office for Aging of China. 2022 national report on the development of aging services[EB/OL] https://www.gov.cn/lianbo/bumen/202312/P020231214405906944856.pdf, 2023.
    [3] PIRZADA P, WILDE A, and HARRIS-BIRTILL D. Remote photoplethysmography for heart rate and blood oxygenation measurement: A review[J]. IEEE Sensors Journal, 2024, 24(15): 23436–23453. doi: 10.1109/JSEN.2024.3405414.
    [4] WANG Wenjin, DEN BRINKER A C, STUIJK S, et al. Algorithmic principles of remote PPG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(7): 1479–1491. doi: 10.1109/TBME.2016.2609282.
    [5] KOBAYASHI L, CHUCK C C, KIM C K, et al. Comparison of video photoplethysmography, video motion analysis, and passive infrared thermography against traditional contact methods for acquiring vital signs in emergency department populations[C]. 2023 IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, USA, 2023: 134–141. doi: 10.1109/UEMCON59035.2023.10316088.
    [6] PEREIRA C B, YU Xinchi, BLAZEK V, et al. Robust remote monitoring of breathing function by using infrared thermography[C]. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015: 4250–4253. doi: 10.1109/EMBC.2015.7319333.
    [7] 方震, 简璞, 张浩, 等. 基于FMCW雷达的非接触式医疗健康监测技术综述[J]. 雷达学报, 2022, 11(3): 499–516. doi: 10.12000/JR22019.

    FANG Zhen, JIAN Pu, ZHANG Hao, et al. Review of noncontact medical and health monitoring technologies based on FMCW radar[J]. Journal of Radars, 2022, 11(3): 499–516. doi: 10.12000/JR22019.
    [8] XIONG Junjun, HONG Hong, XIAO Lei, et al. Vital signs detection with difference beamforming and orthogonal projection filter based on SIMO-FMCW radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(1): 83–92. doi: 10.1109/TMTT.2022.3181129.
    [9] MA Yuanren, ZHAO Heng, ZHUANG Zhongxu, et al. Sleep-disordered breathing detection based on radar-pulse oximeter sensor fusion[C]. 2023 Asia-Pacific Microwave Conference, Taipei, China, 2023: 260–262. doi: 10.1109/APMC57107.2023.10439668.
    [10] SUN Li, BAI Ge, LUO Changhao, et al. A large-scale movement path fitting based phase compensation algorithm for FMCW radar vital sign detection[C]. 2024 IEEE Topical Conference on Wireless Sensors and Sensor Networks, San Antonio, USA, 2024: 37–40. doi: 10.1109/WiSNeT59910.2024.10438585.
    [11] 工业和信息化部. 中华人民共和国无线电频率划分规定[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5439640.htm, 2023.

    Ministry of Industry and Information Technology of China. Provisions on the allocation of radio frequencies of the People’s Republic of China[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5439640.htm, 2023.
    [12] 国际电信联盟. ITU-R SM.2093-4[EB/OL]. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2093-4-2021-PDF-C.pdf, 2021.

    ITU. ITU-R SM.2093-4[EB/OL]. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2093-4-2021-PDF-C.pdf, 2021.
    [13] 国家药品监督管理局. YY 9706.102-2021 医用电气设备 第1-2部分: 基本安全和基本性能的通用要求 并列标准: 电磁兼容 要求和试验[S]. 北京: 中国标准出版社, 2021.

    National Medical Products Administration. YY 9706.102-2021 Medical electrical equipment—Part 1-2: General requirements for basic safety and essential performance—collateral standard: Electromagnetic compatibility—requirements and tests[S]. Beijing: Standards Press of China, 2021.
    [14] Micradar. Healthy care radar[EB/OL]. https://en.micradar.cn/, 2024.
    [15] NAM Y, REYES B A, and CHON K H. Estimation of respiratory rates using the built-in microphone of a smartphone or headset[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(6): 1493–1501. doi: 10.1109/JBHI.2015.2480838.
    [16] FUJITA Y, WATANABE K, KOBAYASHI K, et al. Development of system for unrestrained measurement of vital signs in the bathroom[C]. SICE Annual Conference 2011, Tokyo, Japan, 2011: 2322–2325.
    [17] DAFNA E, HALEVI M, BEN OR D, et al. Estimation of macro sleep stages from whole night audio analysis[C]. Annu Int Conf IEEE Eng Med Biol Soc 2016, Florida, USA, 2016: 2847–2850. doi: 10.1109/EMBC.2016.7591323.
    [18] WANG Zhi, ZHANG Fusang, LI Siheng, et al. Exploiting passive beamforming of smart speakers to monitor human heartbeat in real time[C]. 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685922.
    [19] 王军强. 噪声敏感建筑隔声与声舒适性要求[J]. 声学技术, 2023, 42(1): 57–61. doi: 10.16300/j.cnki.1000-3630.2023.01.010.

    WANG Junqiang. Requirements for sound insulation and sound comfort of noise-sensitive buildings[J]. Technical Acoustics, 2023, 42(1): 57–61. doi: 10.16300/j.cnki.1000-3630.2023.01.010.
    [20] 国家环境保护总部. GB 22337-2008 社会生活环境噪声排放标准[S]. 北京: 中国环境科学出版社, 2008.

    National Environmental Protection Headquarters. GB 22337-2008 Emission standard for community noise[S]. Beijing: China Environmental Press, 2008.
    [21] AL-NAJI A, AL-ASKERY A J, GHARGHAN S K, et al. A system for monitoring breathing activity using an ultrasonic radar detection with low power consumption[J]. Journal of Sensor and Actuator Networks, 2019, 8(2): 32. doi: 10.3390/jsan8020032.
    [22] AMBROSANIO M, FRANCESCHINI S, GRASSINI G, et al. A multi-channel ultrasound system for non-contact heart rate monitoring[J]. IEEE Sensors Journal, 2020, 20(4): 2064–2074. doi: 10.1109/JSEN.2019.2949435.
    [23] WANG Yili. Vital signs estimation scheme based on autocorrelation and variational mode decomposition using ultra-wide band radar[C]. 2023 8th International Conference on Intelligent Computing and Signal Processing, Xi’an, China, 2023: 350–354. doi: 10.1109/ICSP58490.2023.10248772.
    [24] MA Shaopeng, XUE Wei, CHEN Kehui, et al. Radar vital signs detection method based on variational mode decomposition and wavelet transform[C]. 2021 China Automation Congress, Beijing, China, 2021: 7469–7474. doi: 10.1109/CAC53003.2021.9728129.
    [25] XIA Ziliang, WANG Xinhuai, WEI Hongbo, et al. Detection of vital signs based on variational mode decomposition using FMCW radar[C]. 2021 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 2021: 1–3. doi: 10.1109/ICMMT52847.2021.9617967.
    [26] YANG Xuan, WANG Ziying, ZHANG Li, et al. A novel arc-chord approximation demodulation based on green’s theorem[C]. 2023 IEEE MTT-S International Wireless Symposium, Qingdao, China, 2023: 1–3. doi: 10.1109/IWS58240.2023.10222839.
    [27] LV Qinyi, CAO Congqi, and ZHOU Deyun. Wireless vital-sign detection based on improved arc-chord approximation demodulation[C]. 2022 IEEE MTT-S International Microwave Biomedical Conference, Suzhou, China, 2022: 57–59. doi: 10.1109/IMBioC52515.2022.9790242.
    [28] LV Qinyi, MIN Lingtong, CAO Congqi, et al. Time-domain Doppler biomotion detections immune to unavoidable DC offsets[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8505010. doi: 10.1109/TIM.2021.3125096.
    [29] ZHANG Li, FU Changhong, ZHUANG Zhongxu, et al. Kalman filter and cross-multiply algorithm with adaptive DC offset removal[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4002710. doi: 10.1109/TIM.2022.3147317.
    [30] CAO Zhiyuan, ZHANG Chengcheng, JIN Zirui, et al. A DC offset cancellation circuit using digital assistance technique and self-calibrating comparator for RF transceiver[C]. 2023 IEEE 15th International Conference on ASIC, Nanjing, China, 2023: 1–4. doi: 10.1109/ASICON58565.2023.10396145.
    [31] HAZRA S, FUSCO A, KIPRIT G N, et al. Robust radar-based vital sensing with adaptive sinc filtering and random body motion rejections[J]. IEEE Sensors Letters, 2023, 7(5): 7001604. doi: 10.1109/LSENS.2023.3266237.
    [32] TARIQ A and GHAFOURI-SHIRAZ H. Vital signs detection using Doppler radar and continuous wavelet transform[C]. 5th European Conference on Antennas and Propagation, Rome, Italy, 2011: 285–288.
    [33] ZHANGI T, VALERIO G, SARRAZIN J, et al. Wavelet-based analysis of 60 GHz Doppler radar for non-stationary vital sign monitoring[C]. 2017 11th European Conference on Antennas and Propagation, Paris, France, 2017: 1876–1877. doi: 10.23919/EuCAP.2017.7928689.
    [34] FU Yangye, SUN Lijuan, GUO Jian, et al. EEMD-MICA based heart rate extraction algorithm for radar signals[C]. 2023 35th Chinese Control and Decision Conference, Yichang, China, 2023: 1649–1655. doi: 10.1109/CCDC58219.2023.10327001.
    [35] INDU S, GUPTA A, KAW A, et al. Life detection system using continuous wave Doppler radar and blind source separation[C]. 2017 Devices for Integrated Circuit, Kalyani, India, 2017: 711–715. doi: 10.1109/DEVIC.2017.8074043.
    [36] LIU Heng, WANG Yong, ZHOU Mu, et al. Millimeter-wave radar vital signs detection based on modified independent component analysis[C]. 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation, Guangzhou, China, 2023: 1–2. doi: 10.1109/APCAP59480.2023.10470254.
    [37] CHOWDHURY J H, SHIHAB M, PRAMANIK S K, et al. Separation of heartbeat waveforms of simultaneous two-subjects using independent component analysis and empirical mode decomposition[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(8): 1059–1062. doi: 10.1109/LMWT.2024.3420253.
    [38] HUANG C Y, FANG Guanwei, CHUANG H R, et al. Clutter-resistant vital sign detection using amplitude-based demodulation by EEMD-PCA-correlation algorithm for FMCW radar systems[C]. 2019 49th European Microwave Conference, Paris, France, 2019: 928–931. doi: 10.23919/EuMC.2019.8910730.
    [39] YU Xiaogang, LI Changzhi, and LIN J. Noise analysis for noncontact vital sign detectors[C]. 2010 IEEE 11th Annual Wireless and Microwave Technology Conference, Melbourne, USA, 2010: 1–4. doi: 10.1109/WAMICON.2010.5461889.
    [40] MARZO A, CORKETT T, and DRINKWATER B W. Ultraino: An open phased-array system for narrowband airborne ultrasound transmission[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(1): 102–111. doi: 10.1109/TUFFC.2017.2769399.
    [41] MÄKINEN Y, AZZARI L, and FOI A. Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching[J]. IEEE Transactions on Image Processing, 2020, 29: 8339–8354. doi: 10.1109/TIP.2020.3014721.
    [42] WANG Jingyu, WANG Xiang, ZHU Zhongbo, et al. 1-D microwave imaging of human cardiac motion: An ab-initio investigation[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 2101–2107. doi: 10.1109/TMTT.2013.2252186.
    [43] YANG Xiufang, JIAO Zhen, and YANG Yankang. Researchon linear demodulation method of Doppler radar vital signal[C]. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms, Changchun, China, 2022: 1381–1385. doi: 10.1109/EEBDA53927.2022.9744892.
    [44] WANG Jingyu, WANG Xiang, CHEN Lei, et al. Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 145–153. doi: 10.1109/TIM.2013.2277530.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  146
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-09-22
  • 网络出版日期:  2024-10-18

目录

    /

    返回文章
    返回