基于脉内频率编码联合调频斜率捷变波形的ISRJ对抗方法

王晓戈 李槟槟 陈辉 刘维建 朱永哲 倪萌钰

王晓戈, 李槟槟, 陈辉, 等. 基于脉内频率编码联合调频斜率捷变波形的ISRJ对抗方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24046
引用本文: 王晓戈, 李槟槟, 陈辉, 等. 基于脉内频率编码联合调频斜率捷变波形的ISRJ对抗方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24046
WANG Xiaoge, LI Binbin, CHEN Hui, et al. Anti-ISRJ method based on intrapulse frequency-coded joint frequency modulation slope agile radar waveform[J]. Journal of Radars, in press. doi: 10.12000/JR24046
Citation: WANG Xiaoge, LI Binbin, CHEN Hui, et al. Anti-ISRJ method based on intrapulse frequency-coded joint frequency modulation slope agile radar waveform[J]. Journal of Radars, in press. doi: 10.12000/JR24046

基于脉内频率编码联合调频斜率捷变波形的ISRJ对抗方法

doi: 10.12000/JR24046
基金项目: 国家自然科学基金(62001510, 62101593)
详细信息
    作者简介:

    王晓戈,博士生,主要研究方向为雷达抗干扰技术和雷达信号处理

    李槟槟,博士,副教授,主要研究方向为极化敏感阵列信号处理和雷达抗干扰技术

    陈 辉,博士,教授,主要研究方向为阵列信号处理、雷达抗干扰技术和新体制雷达

    刘维建,博士,副教授,主要研究方向为雷达目标检测、目标检测和新体制雷达

    朱永哲,博士生,主要研究方向为雷达抗干扰技术和雷达信号处理

    倪萌钰,博士,工程师,主要研究方向为雷达抗干扰技术和星载雷达信号处理

    通讯作者:

    李槟槟 binbinli_1025@163.com

    陈辉 574667385@qq.com

  • 责任主编:全英汇 Corresponding Editor: QUAN Yinghui
  • 中图分类号: TN972

Anti-ISRJ Method Based on Intrapulse Frequency-coded Joint Frequency Modulation Slope Agile Radar Waveform

Funds: The National Natural Science Foundation of China (62001510, 62101593)
More Information
  • 摘要: 间歇采样转发干扰(ISRJ)是一种脉内相参干扰,能在目标斜距前后形成多个逼真假目标来严重影响雷达检测,是当前电子反对抗的热点之一。针对这一问题,该文提出了一种基于脉内频率编码联合调频斜率捷变波形的抗ISRJ方法。首先,雷达发射脉内频率编码联合调频斜率捷变信号,通过子脉冲中心频率、调频斜率捷变提高子脉冲间相互掩护能力。之后依据发射信号子脉冲斜率变化时序将回波信号划分为多个切片。然后利用模糊C均值(FCM)算法对回波切片进行干扰识别。最后在分数阶域和时域对回波信号进行级联滤波。仿真结果表明,FCM方法在信噪比(SNR)大于-2.5 dB和干信比(JSR)大于5 dB时,能100%识别干扰机同步采样场景下回波中的受干扰回波切片。在较高JSR和低SNR下,所提方法能有效减少目标能量损失并抑制剩余干扰产生的距离旁瓣。在JSR为50 dB时,干扰抑制后的目标检测概率可达90%以上。

     

  • 图  1  脉内频率编码联合调频斜率捷变信号时频图

    Figure  1.  Time-frequency diagram of intra-pulse frequency coded joint FM slope agile waveform

    图  2  ISRJ机理

    Figure  2.  Mechanism of ISRJ

    图  3  脉内频率编码回波信号时频分布

    Figure  3.  Time-frequency distribution of the intra-pulse frequency coded echo signal

    图  4  脉内调频斜率捷变信号的最优变换阶次分布

    Figure  4.  Optimal fractional order distribution of the intra-pulse FM slope agile signal

    图  5  单参数捷变波形与双参数捷变波形的自相关结果对比

    Figure  5.  Comparison of autocorrelation results between single-parameter agile waveform and dual-parameter agile waveform

    图  6  不同子脉冲数下的自相关结果

    Figure  6.  Autocorrelation results of different sub-pulse numbers

    图  7  ISRJ抑制方法流程图

    Figure  7.  Flow chart of the proposed ISRJ suppression method

    图  8  脉内频率编码联合调频斜率捷变信号的时频图

    Figure  8.  Time-frequency diagram of the intra-pulse frequency coded joint FM slope agile signal

    图  9  ISDRJ抑制

    Figure  9.  Interference suppression for ISDRJ

    图  10  ISPRJ抑制

    Figure  10.  Interference suppression for ISPRJ

    图  11  ISCRJ抑制

    Figure  11.  Interference suppression for ISCRJ

    图  12  FCM方法和文献[24]方法在不同SNR和JSR下对受干扰回波切片的分类准确率和分类数目

    Figure  12.  CA and identification number of the FCM method and Ref. [24] method for the interfered echo slice at different JSRs and SNRs

    图  13  不同方法抗ISDRJ后的目标检测概率

    Figure  13.  The TDP of echo signal containing ISDRJ after interference suppression by different methods

    图  14  不同方法抗ISPRJ后的目标检测概率

    Figure  14.  The TDP of echo signal containing ISPRJ after interference suppression by different methods

    图  15  不同方法抗ISCRJ后的目标检测概率

    Figure  15.  The TDP of echo signal containing ISCRJ after interference suppression by different methods

    图  16  干扰抑制后脉压结果(${\tau _{\mathrm{d}}} = 1{\text{ }} {\text{μs}}$)

    Figure  16.  Pulse compression results after interference suppression (${\tau _{\mathrm{d}}} = 1{\text{ }} {\text{μs}}$)

    图  17  采样延时与干扰抑制后目标归一化幅度关系

    Figure  17.  Relationship curve between sampling delay and normalized amplitude of target after interference suppression

    图  18  干扰抑制后脉压结果(${\tau _{\mathrm{j}}}/{T_{{\mathrm{sub}}}} = 1.6$)

    Figure  18.  Pulse compression results after interference suppression (${\tau _{\mathrm{j}}}/{T_{{\mathrm{sub}}}} = 1.6$)

    图  19  采样脉冲宽度与干扰抑制后目标归一化幅度关系

    Figure  19.  Relationship curve between sampling pulse duration and normalized amplitude of target after interference suppression

    1  模糊C均值算法

    1.   Fuzzy C-mean algorithm

     输入:X:样本集;N:样本数;K:类别数;
     输出:$ {\mathrm{Label}}\left( {{x_i}} \right),i = 1,2, \cdots ,N $:样本所属类别
     初始化:U:隶属度矩阵;
       $\ell = 2$:模糊加权指数;
       $\varepsilon = {10^{ - 5}}$:阈值;
       $h = 1$:迭代次数
     1: repeat
     2: 根据式(12)计算各聚类中心
     3: 根据式(11)更新隶属度矩阵U
     4: until $\left\| {{{\boldsymbol{U}}_h} - {{\boldsymbol{U}}_{h - 1}}} \right\| \le \varepsilon $
     5: else
     6: $h = h + 1$
     7: return $ {\mathrm{Label}}\left( {{x_i}} \right),i = 1,2, \cdots ,N $
    下载: 导出CSV

    表  1  仿真实验的参数设置

    Table  1.   Parameter settings for simulation experiments

    参数 数值
    雷达发射信号脉宽${T_{\rm p}}$ 100 μs
    子脉冲脉宽${T_{{\mathrm{sub}}}}$ 5 μs
    子脉冲数N 20
    子脉冲最小带宽${B_{\min }}$ 2 MHz
    子脉冲最大带宽${B_{\max }}$ 10 MHz
    子脉冲载频最大间隔${B_0}$ 10 MHz
    采样频率${f_{\mathrm{s}}}$ 20 MHz
    干扰机采样脉冲宽度${\tau _{\mathrm{j}}}$ 5 μs
    间歇采样重复周期${T_{\mathrm{s}}}$ 25 μs
    干信比(JSR) 20 dB
    信噪比(SNR) 0 dB
    下载: 导出CSV

    表  2  不同方法在不同SNR下的JSR容限(dB)

    Table  2.   The JSR tolerance of different methods at different SNRs (dB)

    方法 –10 dB –5 dB 0 dB
    ISDRJ ISPRJ ISCRJ ISDRJ ISPRJ ISCRJ ISDRJ ISPRJ ISCRJ
    文献[11]方法 40 32.5 37.5 40 32.5 37.5 40 32.5 37.5
    文献[25]方法 30 22.5 27.5 40 27.5 32.5 50 35.0 37.5
    所提方法 50 50.0 50.0 50 50.0 50.0 50 50.0 50.0
    下载: 导出CSV
  • [1] HANBALI S B S and KASTANTIN R. A review of self-protection deceptive jamming against chirp radars[J]. International Journal of Microwave and Wireless Technologies, 2017, 9(9): 1853–1861. doi: 10.1017/S1759078717000708.
    [2] SPARROW M J and CIKALO J. ECM techniques to counter pulse compression radar[P]. US, 7081846, 2006.
    [3] RIABUKHA V P, SEMENIAKA A V, KATIUSHYN Y A, et al. Pulse DRFM jamming formation and its mathematical simulation[C]. 2022 IEEE 2nd Ukrainian Microwave Week, Ukraine, 2022: 654–659. doi: 10.1109/UkrMW58013.2022.10037145.
    [4] WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F: Information Sciences, 2007, 50(1): 113–123. doi: 10.1007/s11432-007-2017-y.
    [5] LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485.
    [6] LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689.
    [7] 全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11.

    QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar waveform countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11.
    [8] 王晓戈, 陈辉, 倪萌钰, 等. 基于相位调制的雷达抗假目标干扰方法[J]. 系统工程与电子技术, 2021, 43(9): 2476–2483. doi: 10.12305/j.issn.1001-506X.2021.09.14.

    WANG Xiaoge, CHEN Hui, NI Mengyu, et al. Radar anti-false target jamming method based on phase modulation[J] Systems Engineering and Electronics, 2021, 43(9): 2476–2483. doi: 10.12305/j.issn.1001-506X.2021.09.14.
    [9] YAN Yifei, CHEN Hao, and SU Junhai. Overview on anti-jamming technology in main lobe of radar[C]. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering, Shenyang, China, 2021: 67–71. doi: 10.1109/AUTEEE52864.2021.9668666.
    [10] 张建中, 穆贺强, 文树梁, 等. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法[J]. 电子与信息学报, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851.

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on LFM segmented pulse compression[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851.
    [11] 万鹏程, 白渭雄, 付孝龙. 基于FrFT的LFM间歇采样转发干扰对抗方法[J]. 火力与指挥控制, 2018, 43(10): 35–39. doi: 10.3969/j.issn.1002-0640.2018.10.007.

    WAN Pengcheng, BAI Weixiong, and FU Xiaolong. Fractional fourier transform-based LFM radars for countering interrupted-sampling repeater jamming[J]. Fire Control & Command Control, 2018, 43(10): 35–39. doi: 10.3969/j.issn.1002-0640.2018.10.007.
    [12] CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658.
    [13] YUAN Hui, WANG Chunyang, LI Xin, et al. A method against interrupted-sampling repeater jamming based on energy function detection and band-pass filtering[J]. International Journal of Antennas and Propagation, 2017, 2017: 6759169. doi: 10.1155/2017/6759169.
    [14] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080.

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080.
    [15] 盖季妤, 姜维, 张凯翔, 等. 基于差分特征的间歇采样转发干扰辨识与抑制方法[J]. 雷达学报, 2023, 12(1): 186–196. doi: 10.12000/JR22058.

    GAI Jiyu, JIANG Wei, ZHANG Kaixiang, et al. A method for interrupted-sampling repeater jamming identification and suppression based on differential features[J]. Journal of Radars, 2023, 12(1): 186–196. doi: 10.12000/JR22058.
    [16] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114.
    [17] 刘孟斐, 陈吉源, 潘小义, 等. 基于信息熵的分段脉压间歇采样干扰抑制[J]. 雷达科学与技术, 2023, 21(3): 264–272, 281. doi: 10.3969/j.issn.1672-2337.2023.03.004.

    LIU Mengfei, CHEN Jiyuan, PAN Xiaoyi, et al. Interrupted sampling jamming suppression based on piecewise pulse compression and shannon entropy[J]. Radar Science and Technology, 2023, 21(3): 264–272, 281. doi: 10.3969/j.issn.1672-2337.2023.03.004.
    [18] LU Lu and GAO Meiguo. An improved sliding matched filter method for interrupted sampling repeater jamming suppression based on jamming reconstruction[J]. IEEE Sensors Journal, 2022, 22(10): 9675–9684. doi: 10.1109/JSEN.2022.3159561.
    [19] 张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM波形的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12.

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti interrupted-sampling repeater jamming method based on stepped LFM waveform[J]. Systems Engineering and Electronics, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12.
    [20] ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27: 1610–1614. doi: 10.1109/LSP.2020.3021667.
    [21] 周凯, 何峰, 粟毅. 一种快速抗间歇采样转发干扰波形和滤波器联合设计算法[J]. 雷达学报, 2022, 11(2): 264–277. doi: 10.12000/JR22015.

    ZHOU Kai, HE Feng, and SU Yi. Fast algorithm for joint waveform and filter design against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 264–277. doi: 10.12000/JR22015.
    [22] WANG Fulai, LI Nanjun, PANG Chen, et al. Complementary sequences and receiving filters design for suppressing interrupted sampling repeater jamming[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4022305. doi: 10.1109/LGRS.2022.3156164.
    [23] 董淑仙, 吴耀君, 方文, 等. 频率捷变雷达联合模糊C均值抗间歇采样干扰[J]. 雷达学报, 2022, 11(2): 289–300. doi: 10.12000/JR21205.

    DONG Shuxian, WU Yaojun, FANG Wen, et al. Anti-interrupted sampling repeater jamming method based on frequency-agile radar joint fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289–300. doi: 10.12000/JR21205.
    [24] 刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001.

    LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001.
    [25] 杜思予, 刘智星, 吴耀君, 等. 频率捷变波形联合时频滤波器抗间歇采样转发干扰[J]. 系统工程与电子技术, 2023, 45(12): 3819–3827. doi: 10.12305/j.issn.1001-506X.2023.12.11.

    DU Siyu, LIU Zhixing, WU Yaojun, et al. Frequency agility waveform combined with time-frequency filter to suppress interrupted-sampling repeater jamming[J]. Systems Engineering and Electronics, 2023, 45(12): 3819–3827. doi: 10.12305/j.issn.1001-506X.2023.12.11.
    [26] 牛闯, 林强, 段敏, 等. 脉内频率-时延捷变雷达抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2024, 46(5): 1583–1598. doi: 10.12305/j.issn.1001-506X.2024.05.13.

    NIU Chuang, LIN Qiang, DUAN Min, et al. Anti-interrupted sampling and repeater jamming method for intra-pulse frequency and time delay agile radar[J]. Systems Engineering and Electronics, 2024, 46(5): 1583–1598. doi: 10.12305/j.issn.1001-506X.2024.05.13.
    [27] 张亮, 王国宏, 张翔宇, 等. 基于分数阶字典的间歇采样转发干扰自适应抑制算法[J]. 系统工程与电子技术, 2020, 42(7): 1439–1448. doi: 10.3969/j.issn.1001-506X.2020.07.02.

    ZHANG Liang, WANG Guohong, ZHANG Xiangyu, et al. Interrupted-sampling repeater jamming adaptive suppression algorithm based on fractional dictionary[J]. Systems Engineering and Electronics, 2020, 42(7): 1439–1448. doi: 10.3969/j.issn.1001-506X.2020.07.02.
    [28] BAHER S and HANBALI S. Countering self-protection smeared spectrum jamming against chirp radars[J]. IET Radar, Sonar & Navigation, 2021, 15(4): 382–389. doi: 10.1049/rsn2.12046.
    [29] BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191–203. doi: 10.1016/0098-3004(84)90020-7.
    [30] WANG Cong, ZHOU Mengchu, PEDRYCZ W, et al. Comparative study on noise-estimation-based fuzzy C-means clustering for image segmentation[J]. IEEE Transactions on Cybernetics, 2024, 54(1): 241–253. doi: 10.1109/TCYB.2022.3217897.3.
    [31] ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084–3091. doi: 10.1109/78.330368.
    [32] WANG Xiaoge, CHEN Hui, LIU Weijian, et al. Echo preprocessing-based smeared spectrum interference suppression[J]. Electronics, 2023, 12(17): 3690. doi: 10.3390/electronics12173690.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  66
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-07-08
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回