空间目标ISAR图像三维基元表示方法

王粲雨 蒋李兵 任笑圆 王壮

王粲雨, 蒋李兵, 任笑圆, 等. 空间目标ISAR图像三维基元表示方法[J]. 雷达学报(中英文), 2024, 13(3): 682–695. doi: 10.12000/JR23241
引用本文: 王粲雨, 蒋李兵, 任笑圆, 等. 空间目标ISAR图像三维基元表示方法[J]. 雷达学报(中英文), 2024, 13(3): 682–695. doi: 10.12000/JR23241
WANG Canyu, JIANG Libing, REN Xiaoyuan, et al. Primitive-based 3D abstraction method for spacecraft ISAR images[J]. Journal of Radars, 2024, 13(3): 682–695. doi: 10.12000/JR23241
Citation: WANG Canyu, JIANG Libing, REN Xiaoyuan, et al. Primitive-based 3D abstraction method for spacecraft ISAR images[J]. Journal of Radars, 2024, 13(3): 682–695. doi: 10.12000/JR23241

空间目标ISAR图像三维基元表示方法

DOI: 10.12000/JR23241
基金项目: 国家部委基金
详细信息
    作者简介:

    王粲雨,博士生,主要研究方向为雷达信号与数据处理、太空态势感知、视觉三维重建等

    蒋李兵,博士,副教授,主要研究方向为雷达信号与数据处理、SAR图像解译、电磁计算等

    任笑圆,博士,讲师,主要研究方向为计算机视觉、计算机图形学等

    王 壮,博士,教授,主要研究方向为雷达信息处理、空间目标监视、自动目标识别

    通讯作者:

    王壮 zhuang_wang@sina.com

  • 责任主编:许小剑 Corresponding Editor: XU Xiaojian
  • 中图分类号: TN975

Primitive-based 3D Abstraction Method for Spacecraft ISAR Images

Funds: The National Ministries Foundation
More Information
  • 摘要: 空间卫星目标的逆合成孔径雷达(ISAR)图像由离散的散射点构成,具有弱纹理、高动态、非连续的特性,造成传统算法对空间目标ISAR图像进行三维重建时,得到的点云结果稀疏,无法覆盖目标整体外形轮廓,进而导致难以精确提取目标结构、姿态参数。针对上述问题,并考虑到空间目标通常由特定模块化部件组成的特点,该文提出一种从空间目标ISAR图像中抽取参数化基元来表示其三维结构的方法。首先利用能量累积算法从ISAR图像中得到目标的稀疏点云,进而利用参数化基元对点云进行拟合,最后将基元投影至ISAR成像平面,并最大化与目标图像的相似度来优化基元参数,得到最优的目标三维基元表示。相比于传统点云三维重建,该方法能够获得对目标三维结构更完整的描述,且所得到的基元参数即代表目标的姿态及结构,可直接支撑后续的目标识别、分析研判等任务。仿真实验证明该方法能够根据ISAR序列图像,有效实现对空间目标的三维表示。

     

  • 图  1  4种典型重点空间目标

    Figure  1.  Four types of typical key spacecrafts

    图  2  ISAR图像语义分割网络结构

    Figure  2.  Structure of ISAR image semantic segmentation network

    图  3  参数化结构基元示意

    Figure  3.  Schematic diagram of parameterized structural primitives

    图  4  仿真条件设置

    Figure  4.  Simulation condition settings

    图  5  成像区间内仿真的5个不同时刻下的ISAR图像

    Figure  5.  ISAR images at five different moments simulated within the imaging interval

    图  6  ISAR图像分割结果

    Figure  6.  ISAR image segmentation results

    图  7  点云重建结果

    Figure  7.  Results of point cloud reconstruction

    图  8  不同方法获得的三维基元在成像平面上的投影与目标ISAR图像的对比

    Figure  8.  Comparison between the projection of primitives reconstructed by different algorithms on imaging planes and the target ISAR images

    图  9  重建结果与目标真值三维结构对比图

    Figure  9.  Comparison between the reconstruction results and the three-dimensional structure of the ground-truth

    表  1  参数取值范围和含义

    Table  1.   The parameters and their meanings

    参数 含义
    $ {D}_{\text{c}}\in \left(\text{0},\;\text{+}\infty \right) $ 舱体直径
    $ {H}_{\text{c}}\in \left(\text{0},\;\text{+}\infty \right) $ 舱体长度
    $ \alpha \in \left({-}\pi \text{/2},\;\pi \text{/2}\right) $ 目标俯仰角,即绕x轴的旋转角
    $ \beta \in \left({-}\pi ,\;\pi \right) $ 目标偏航角,即绕y轴的旋转角
    $ \gamma \in \left({-}\pi ,\;\pi \right) $ 目标滚转角,即绕z轴的旋转角(姿态旋转顺序为$\gamma - \alpha - \beta $)
    $ {T}_{x}\in \left({-}\infty ,\;\text{+}\infty \right) $ 沿x方向的相对平移
    $ {T}_{y}\in \left({-}\infty ,\;\text{+}\infty \right) $ 沿y方向的相对平移
    $ {T}_{z}\in \left({-}\infty ,\;\text{+}\infty \right) $ 沿z方向的相对平移
    $ {L}_{\text{b}}\in \left(\text{0},\;\text{+}\infty \right) $ 帆板长度
    $ {W}_{\text{b}}\in \left(\text{0},\;\text{+}\infty \right) $ 帆板宽度
    $ \theta \in \left({-}\pi \text{/2},\;\pi \text{/2}\right) $ 帆板与舱体之间的夹角
    $ {K}_{z}\in \left({-}{H}_{\text{c}}\text{/2},\;{H}_{\text{c}}\text{/2}\right) $ 帆板与主体的相对位置关系,即帆板沿舱体对称轴方向移动的距离
    下载: 导出CSV

    表  2  目标卫星轨道参数设置

    Table  2.   Target satellite orbit parameters settings

    参数 数值
    偏心率 1.721×10–4
    近地点幅角(°) 14.191
    轨道倾角(°) 98.7173
    升交点赤经(°) 292.785
    平均运动速率(°/s) 5.916×10–2
    下载: 导出CSV

    表  3  几何参数提取结果(m)

    Table  3.   Geometric parameters extraction results (m)

    参数 PCA初始值 仅点云拟合 点云拟合+投影拟合 模型真值
    主轴直径Dc 4.30 3.410 3.760 4.19(实验舱)
    主轴长度Hc 12.97 10.696 11.712 11.95
    帆板长度Lb 19.92 19.140 19.580 19.82
    帆板宽度Wb 4.43 4.520 3.780 3.64
    下载: 导出CSV

    表  4  姿态参数提取结果(°)

    Table  4.   Attitude parameters extraction results (°)

    参数PCA初始值仅点云拟合点云拟合+投影拟合模型真值
    目标俯仰角α90.0583.0991.0590
    目标偏航角β86.7488.3688.2290
    目标滚转角γ4.085.352.060
    帆板倾角θ18.7422.5121.4220
    下载: 导出CSV

    表  5  平移参数提取结果(m)

    Table  5.   Translation parameters extraction results (m)

    参数PCA初始值仅点云拟合点云拟合+投影拟合模型真值
    x方向位移Tx0.620.881.381.79
    y方向位移Ty–0.65–0.44–0.270
    z方向位移Tz0.07–0.020.050
    帆板位移Kz2.212.212.011.78
    下载: 导出CSV

    表  6  平均参数误差

    Table  6.   Average parameter errors

    参数 PCA初始值 仅点云拟合 点云拟合+投影拟合
    εg (m) 1.64 1.42 0.89
    εe (°) 6.07 5.59 2.92
    εt (m) 1.63 1.01 0.50
    IoU3D (ξt=3%lco) 0.62 2.21 0.92
    下载: 导出CSV

    表  7  三维结构交并比对比

    Table  7.   Comparison of IoU3D

    参数 本文方法 文献[16]方法 文献[18]方法
    ξt=1%lco (0.24 m) 0.29 0.28 0.07
    ξt=2%lco (0.48 m) 0.70 0.63 0.14
    ξt=3%lco (0.72 m) 0.92 0.77 0.21
    ξt=4%lco (0.96 m) 0.97 0.83 0.27
    ξt=5%lco (1.20 m) 0.99 0.88 0.33
    下载: 导出CSV
  • [1] 田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060.

    TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060.
    [2] 周叶剑, 马岩, 张磊, 等. 空间目标在轨状态雷达成像估计技术综述[J]. 雷达学报, 2021, 10(4): 607–621. doi: 10.12000/JR21086.

    ZHOU Yejian, MA Yan, ZHANG Lei, et al. Review of on-orbit state estimation of space targets with radar imagery[J]. Journal of Radars, 2021, 10(4): 607–621. doi: 10.12000/JR21086.
    [3] Fraunhofer FHR Lab. Space observation radar TIRA[EB/OL]. https://www.fhr.fraunhofer.de/en/the-institute/technical-equipment/Space-observation-radar-TIRA.html, 2020.
    [4] Fraunhofer FHR Lab. Monitoring the re-entry of the Chinese space station Tiangong-1 with TIRA[EB/OL]. https://www.fhr.fraunhofer.de/en/sections/Radar-for-Space-Situational-Awareness-RWL/monitoring-the-re-entry-of-the-chinese-space-station-tiangong-1-with-tira.html, 2018.
    [5] ZHOU Yejian, ZHANG Lei, CAO Yunhe, et al. Attitude estimation and geometry reconstruction of satellite targets based on ISAR image sequence interpretation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1698–1711. doi: 10.1109/TAES.2018.2875503.
    [6] ZHOU Yejian, ZHANG Lei, and CAO Yunhe. Dynamic estimation of spin spacecraft based on multiple-station ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2977–2989. doi: 10.1109/TGRS.2019.2959270.
    [7] ZHOU Yejian, ZHANG Lei, CAO Yunhe, et al. Optical-and-radar image fusion for dynamic estimation of spin satellites[J]. IEEE Transactions on Image Processing, 2020, 29: 2963–2976. doi: 10.1109/TIP.2019.2955248.
    [8] XIE Pengfei, ZHANG Lei, DU Chuan, et al. Space target attitude estimation from ISAR image sequences with key point extraction network[J]. IEEE Signal Processing Letters, 2021, 28: 1041–1045. doi: 10.1109/LSP.2021.3075606.
    [9] ZHOU Jianxiong, SHI Zhiguang, and FU Qiang. Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1638–1655. doi: 10.1109/tgrs.2014.2346509.
    [10] 白雪茹. 空天目标逆合成孔径雷达成像新方法研究[D]. [博士论文], 西安电子科技大学, 2011.

    BAI Xueru. Study on new techniques for ISAR imaging of aerospace targets[D]. [Ph.D. dissertation], Xidian University, 2011.
    [11] FERRARA M, ARNOLD G, and STUFF M. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1906–1912. doi: 10.1109/TPAMI.2008.294.
    [12] MCFADDEN F E. Three-dimensional reconstruction from ISAR sequences[C]. SPIE 4744, Sensor Technology and Data Visualization, Orlando, USA, 2002: 58–67. doi: 10.1117/12.488289.
    [13] LIU Lei, ZHOU Feng, BAI Xueru, et al. Joint cross-range scaling and 3D geometry reconstruction of ISAR targets based on factorization method[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1740–1750. doi: 10.1109/TIP.2016.2526905.
    [14] WANG Canyu, JIANG Libing, LI Mengxi, et al. Slow-spinning spacecraft cross-range scaling and attitude estimation based on sequential ISAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 7469–7485. doi: 10.1109/TAES.2023.3291337.
    [15] WANG Feng, XU Feng, and JIN Yaqiu. Three-dimensional reconstruction from a multiview sequence of sparse ISAR imaging of a space target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 611–620. doi: 10.1109/TGRS.2017.2737988.
    [16] LIU Lei, ZHOU Zuobang, ZHOU Feng, et al. A new 3-D geometry reconstruction method of space target utilizing the scatterer energy accumulation of ISAR image sequence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8345–8357. doi: 10.1109/TGRS.2020.2986465.
    [17] PASCHALIDOU D, VAN GOOL L, and GEIGER A. Learning unsupervised hierarchical part decomposition of 3D objects from a single RGB image[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1057–1067. doi: 10.1109/CVPR42600.2020.00114.
    [18] KLUGER F, ACKERMANN H, BRACHMANN E, et al. Cuboids revisited: Learning robust 3D shape fitting to single RGB images[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13065–13074. doi: 10.1109/CVPR46437.2021.01287.
    [19] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [20] QUADRELLI M B. Spacecraft dynamics and control: An introduction [bookshelf][J]. IEEE Control Systems Magazine, 2015, 35(2): 103–106. doi: 10.1109/MCS.2014.2385295.
    [21] BELLEKENS B, SPRUYT V, BERKVENS R, et al. A survey of rigid 3D pointcloud registration algorithms[C]. The Fourth International Conference on Ambient Computing, Applications, Services and Technologies, Rome, Italy, 2014: 8–13.
    [22] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 13.
    [23] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076.
    [24] BOAG A. A fast physical optics (FPO) algorithm for high frequency scattering[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(1): 197–204. doi: 10.1109/tap.2003.822426.
    [25] 邹嘉玮, 何思远, 杨泽望, 等. 复杂目标雷达图像形成机理分析[J]. 科学技术与工程, 2022, 22(28): 12468–12475. doi: 10.3969/j.issn.1671-1815.2022.28.029.

    ZOU Jiawei, HE Siyuan, YANG Zewang, et al. Analysis of radar image formation mechanism of complex target[J]. Science Technology and Engineering, 2022, 22(28): 12468–12475. doi: 10.3969/j.issn.1671-1815.2022.28.029.
    [26] 董纯柱, 胡利平, 朱国庆, 等. 地面车辆目标高质量SAR图像快速仿真方法[J]. 雷达学报, 2015, 4(3): 351–360. doi: 10.12000/JR15057.

    DONG Chunzhu, HU Liping, ZHU Guoqing, et al. Efficient simulation method for high quality SAR images of complex ground vehicles[J]. Journal of Radars, 2015, 4(3): 351–360. doi: 10.12000/JR15057.
    [27] 崔闪, 李胜, 闫华. 一种基于HRRP的三维散射中心提取方法[J]. 系统仿真学报, 2018, 30(2): 443–451. doi: 10.16182/j.issn1004731x.joss.201802010.

    CUI Shan, LI Sheng, and YAN Hua. A method of 3D scattering center extraction based on multiple HRRP series[J]. Journal of System Simulation, 2018, 30(2): 443–451. doi: 10.16182/j.issn1004731x.joss.201802010.
    [28] 闫华, 张磊, 陆金文, 等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370–381. doi: 10.12000/JR21005.

    YAN Hua, ZHANG Lei, LU Jinwen, et al. Frequency-dependent factor expression of the GTD scattering center model for the arbitrary multiple scattering mechanism[J]. Journal of Radars, 2021, 10(3): 370–381. doi: 10.12000/JR21005.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  248
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-03-13
  • 网络出版日期:  2024-04-26
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回