分布式孔径相参合成原理、发展与技术实现综述

刘兴华 王国玉 徐振海 汪连栋

刘兴华, 王国玉, 徐振海, 等. 分布式孔径相参合成原理、发展与技术实现综述[J]. 雷达学报, 2023, 12(6): 1229–1248. doi: 10.12000/JR23195
引用本文: 刘兴华, 王国玉, 徐振海, 等. 分布式孔径相参合成原理、发展与技术实现综述[J]. 雷达学报, 2023, 12(6): 1229–1248. doi: 10.12000/JR23195
LIU Xinghua, WANG Guoyu, XU Zhenhai, et al. Review of principles, development and technical implementation of coherently combining distributed apertures[J].Journal of Radars, 2023, 12(6): 1229–1248. doi: 10.12000/JR23195
Citation: LIU Xinghua, WANG Guoyu, XU Zhenhai, et al. Review of principles, development and technical implementation of coherently combining distributed apertures[J].Journal of Radars, 2023, 12(6): 1229–1248. doi: 10.12000/JR23195

分布式孔径相参合成原理、发展与技术实现综述

DOI: 10.12000/JR23195
基金项目: 中国博士后科学基金(2023M734290)
详细信息
    作者简介:

    刘兴华,博士,在站博士后,研究方向为分布式雷达协同探测、阵列信号处理等

    王国玉,博士,教授,研究方向为空天电磁对抗仿真与试验评估、空间目标电磁感知、太空与电磁安全等

    徐振海,博士,研究员,研究方向为阵列雷达设计与处理技术

    汪连栋,博士,研究员,研究方向为电磁场与微波技术、电子信息装备试验与评估等

    通讯作者:

    刘兴华 xinghua217@163.com

  • 责任主编:鲁耀兵 Corresponding Editor: LU Yaobing
  • 11)最早由声学领域的研究者提出,2004年被引入电磁学领域[11]
  • 22)分布式孔径部署范围远大于传统相控阵阵面,相对近距离探测场景下,孔径间观测视角上的差异或带来极化不匹配、大气效应差异,甚至收发式孔径还可能引入目标散射差异等。这些因素带来的相参性退化比较复杂,且高度依赖于探测的环境和孔径分布范围。后续的讨论暂假定分布式孔径相对探测场景是集中式布置的(co-located),近似忽略视角差异带来一系列的相参性退化。
  • 33)理想情况下,各孔径发射的信号相同,均为 \begin{document}${s(t) {\mathrm{e}}^{{\mathrm{j}}2\pi f_{{\mathrm{c}}} t}} $\end{document} 。然而,由于孔径间非理想同步的原因,导致实际发射的信号存在差异,变为 \begin{document}${ s_{1}^{{\mathrm{t}}}({{t)}}} $\end{document} \begin{document}${ s_{2}^{{\mathrm{t}}}({{t}}) }$\end{document} ,但信号仍具有相参性,经恰当的时移和相移,就能对准时间和相位并趋于一致。4)若时频同步偏差是时变的,需各孔径有高稳的振荡源并定时进行闭环式校正,即视变化的同步偏差是随时间阶梯变化的。
  • 45)比如利用固定位置发射的信号作为外部标校源,对孔径位置偏差、初相偏差等进行标定。6)由于成本的考虑,美国国土防御传感器取消了该X波段雷达选项,改为建造S波段的远程识别雷达(Long Range Discrimination Radar, LRDR),但在论证中“堆叠式”TPY-2一直作为LRDR的替代方案存在。7)Have Stare为X波段碟型雷达,曾部署于范登堡空军基地,后转移到挪威的瓦尔多,更名为GLOBUS II。
  • 58)用于解释和补偿差分多普勒预测误差、天线间的初相差异,以及未确定的剩余相位偏差。
  • 69)同步以太网较传统以太网的区别在于,其网络中的每个节点时钟都经过内部的锁相环电路锁定到主节点,来消除相位抖动。
  • 710)对坐标轴 \begin{document}${ \varepsilon_{\tau_{n}}-\varepsilon_{\psi_{n}} }$\end{document} 进行尺度变换,记 \begin{document}$ { x={\mathrm{c}} / B x_{\varepsilon_{ \tau_n}}, y=\lambda / 360^{\circ} y_{\varepsilon_{ \psi _{n}}}}$\end{document} \begin{document}$ { (x_{\varepsilon_{ \tau _{n}}}, y_{\varepsilon_{ \psi _{n}}})} $\end{document} ,(x, y)分别为尺度变换前后的坐标值。由于坐标轴尺度变换相当于对图片进行拉伸或缩放,并不改变过原点的斜率 \begin{document}${k=\alpha \cdot y_{\varepsilon_{\tau n}}/x_{\varepsilon_{\psi_{n}}} \cdot B/f_{\mathrm{c}}}$\end{document} ,其中 \begin{document}${k}$\end{document} \begin{document}${\alpha}$\end{document} 为常数。那么,从A点拉伸或缩放到B点的过程中,为保持 \begin{document}$ { k }$\end{document} 恒定, \begin{document}${ y_{\varepsilon_{ \tau _{n}}}/x_{\varepsilon_{ \psi _{n}}}}$\end{document} 减小的过程,就是相对带宽 \begin{document}$ { B / f_{{\mathrm{c}}} }$\end{document} 增加的过程。11)光学时频传输得益于光原子钟的更高的跃迁钟频率,使得时频计量较微波原子钟高了3到4个数量级,频率不确定度达10–18~10–19 s–1
  • 中图分类号: TN95

Review of Principles, Development and Technical Implementation of Coherently Combining Distributed Apertures

Funds: The Postdoctoral Science Foundation of China (2023M734290)
More Information
  • 摘要: 分布式孔径相参合成通过对多个分散布置小孔径的收/发信号进行相参调整,使协同的分布式系统可以用相对低的成本获得比拟于大孔径的功率孔径积,是替代大孔径的可行技术选择。该文首先阐述了分布式孔径相参合成的概念和实现原理,根据是否需要合成目的地处的外部信号输入,将相参合成的实现架构分为闭环式和开环式两类;然后,较为全面地综述了分布式孔径相参合成在导弹防御、深空遥测遥控、超远距离雷达探测、射电天文多领域发展应用情况;进一步阐述相参合成必要且用于对准各孔径收发信号时间和相位的关键技术,包括高精度分布式时频传递和同步技术,以及相参合成参数估计、测量标定和预测技术;最后对分布式孔径相参合成研究进行了总结和展望。

     

  • 图  1  将大孔径分解为更小、更便宜的小孔径构成的分布式系统

    Figure  1.  Decompose large-aperture into distributed systems consisting of smaller and cheaper mini-apertures

    图  2  分布式孔径相参合成示意

    Figure  2.  Schematic diagram of coherently combining distributed apertures

    图  3  相参合成实现架构

    Figure  3.  Implementation architecture of coherent combination

    图  4  分布的多雷达孔径相参合成概念[5]

    Figure  4.  Conceptual architecture for coherently combining multiple radar apertures[5]

    图  5  第谷中心峰分别位于干涉条纹峰值和偏离干涉条纹峰值150°的距离-多普勒图像对比[38]

    Figure  5.  Doppler-delay images comparison where Tycho central peak appears to be located just at the peak of the array fringe-pattern and with 150° offset[38]

    图  6  5个1.2 m天线的上行链路合成阵列及偏差标定校准方案[39]

    Figure  6.  Five 1.2 m Ku-band antennas coherent uplink array and bias calibration scheme[39]

    图  7  “深空先进雷达能力”计划概念示意

    Figure  7.  Conceptual architecture of Deep Space Advanced Radar Capability (DARC) project

    图  8  甚大天线阵中多个小孔径接收相参合成,并在时间和频谱维进一步积累合成[47]

    Figure  8.  Small aperture in the Very Large Array (VLA) coherently combining on receive, and future accumulating in time and spectral dimension[47]

    图  9  Two-way交换时间戳的方式实现时间同步

    Figure  9.  Time synchronization by two-way timestamps exchange

    图  10  不同同步偏差条件下, $ {G_{{\text{loss}}}} $ 不低于0.5 dB的概率

    Figure  10.  Probability that $ {G_{{\text{loss}}}} $ no less than 0.5 dB as a function of synchronization error

    图  11  同时考虑时间和相位同步偏差时, $ {G_{{\text{loss}}}} $ 不低于0.5 dB的概率

    Figure  11.  Probability that $ {G_{{\text{loss}}}} $ no less than 0.5 dB, when jointly considering time and phase synchronization error

    图  12  基于非合作目标反射回波估计相参合成参数原理

    Figure  12.  Principle of coherent combination parameters based on reflection echoes from non-cooperative target

    图  13  基于位置固定已知多普勒域可分的多参考点对孔径位置偏差标定

    Figure  13.  Aperture position bias calibration based on multiple reference points with known fixed position and resolved in the Doppler domain

    图  14  合成目的地动态位置导致孔径间传播路径差改变

    Figure  14.  Dynamic positions of coherent combination destination lead to changes in propagation path difference between apertures

    图  15  合成目的地运动带来的时变相位差 $\Delta \varPhi $ 及外推预测补偿[31]

    Figure  15.  Time-varying phase differences $\Delta \varPhi $ due to combination destination motion, and extrapolation prediction for compensation[31]

    表  1  闭环式和开环式架构对比

    Table  1.   Closed-loop vs. open-loop architectures

    实现架构 外部馈源输入 孔径精确位置 时频同步 相参性退化因素 波束形成位置
    闭环式 必需,且一定源于合成目的地 非必需 非必需(信号“反转”合成类方法必需) 统一考虑 只能指向馈源方向
    开环式 可能需要,输入不做限定且一般不源于
    合成目的地 4
    必需 必需 拆分考虑 可自由切换
    下载: 导出CSV

    表  2  X波段典型雷达比较[22]

    Table  2.   Comparison of typical radars in X-band[22]

    雷达 T/R组件数 T/R组件平均发射功率 天线孔径(m2) 相对功率孔径积 相对探测距离 电扫范围(°)
    TPY-2 25344 3.2 W 9.2 0.0012 0.19 ±60
    “堆叠式”TPY-2 50688 3.2 W 18.4 0.0098 0.31 ±60
    SBX 45264 2.0 W 249.0 1.0000 1.00 ±12
    GBR-P 16896 1.2 W 105.0 0.0400 0.45 ±11
    Have Stare 4 -- 70.0 kW (总) 573.0 4.1000 1.40 --
    下载: 导出CSV

    表  3  典型时频传递方案的指标[53,67-70]

    Table  3.   Indicators of typical time-frequency transfer methods[53,67-70]

    时频传递方案 时间准确度 频率稳定度 特点
    长波[67] ~1 μs 1×10–12@1 d 覆盖范围广,传递距离可达3000 km
    TWSTFT[67] ~ns 1×10–14@1 d 需要租用卫星使用时间及接收设备
    White Rabbit[68] <ns 2×10–15@1 d 需要千兆同步以太网
    光载射频[69] ~ps 1.6×10–18@1 d 长距离传输需要中继
    自由空间光学频率梳传递[70] 100 fs 4×10−19@10000 s 需要瓦级功率的高稳定光学频率梳,以及纳瓦级高灵敏度的线性光学采样
    无线稀疏双音[53] ~ps ~10–15@1 d 高精度测量基线长度并结合PLL电路实现小范围节点间的时频传递
    下载: 导出CSV
  • [1] LAZIO J, VIRKKI A K, PINILLA-ALONSO N, et al. The next-generation ground-based planetary radar[J]. Bulletin of the American Astronomical Society, 2021, 53(4): 434. doi: 10.3847/25c2cfeb.9c808c46
    [2] 鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017: 216–217.

    LU Yaobing and GAO Hongwei. Distributed Aperture Radar[M]. Beijing: National Defense Industry Press, 2017: 216–217.
    [3] KORDIK A M, METCALF J G, CURTIS D D, et al. Graceful performance degradation and improved error tolerance via mixed-mode distributed coherent radar[J]. IEEE Sensors Journal, 2023, 23(5): 5251–5262. doi: 10.1109/JSEN.2023.3236487
    [4] NANZER J A, MGHABGHAB S R, ELLISON S M, et al. Distributed phased arrays: Challenges and recent advances[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4893–4907. doi: 10.1109/TMTT.2021.3092401
    [5] CUOMO K M, COUTTS S D, MCHARG J C, et al. Wideband aperture coherence processing for next generation radar (NexGen)[R]. Bostan: Lincoln Laboratory, 2004.
    [6] 刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001

    LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001
    [7] THOME G D, ENZMANN R P, and STEUDEL F. System and method for coherently combining a plurality of radars[P]. US, 7358892, 2008.
    [8] SHARP E and DIAB M. Van Atta reflector array[J]. IRE Transactions on Antennas and Propagation, 1960, 8(4): 436–438. doi: 10.1109/TAP.1960.1144877
    [9] SKOLNIK M and KING D. Self-phasing array antennas[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 142–149. doi: 10.1109/TAP.1964.1138179
    [10] EBERLE J. An adaptively phased, four-element array of thirty-foot parabolic reflectors for passive (Echo) communication systems[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 169–176. doi: 10.1109/TAP.1964.1138190
    [11] YOUNG D P, JACKLIN N, PUNNOOSE R J, et al. Time reversal signal processing for communication[R]. Albuquerque: Sandia National Laboratories, 2011.
    [12] 陈秋菊, 姜秋喜, 曾芳玲, 等. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成[J]. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101

    CHEN Qiuju, JIANG Qiuxi, ZENG Fangling, et al. Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave[J]. Acta Physica Sinica, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [13] YAVUZ M E and TEIXEIRA F L. Ultrawideband microwave sensing and imaging using time-reversal techniques: A review[J]. Remote Sensing, 2009, 1(3): 466–495. doi: 10.3390/rs1030466
    [14] TAN Long, PAN Jifei, JIANG Qiuxi, et al. Application of time-reversal in electromagnetic power synthesis under distributed motion platform[J]. Heliyon, 2022, 8(12): e11822. doi: 10.1016/j.heliyon.2022.e11822
    [15] HEIMILLER R C, BELYEA J E, and TOMLINSON P G. Distributed array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(6): 831–839. doi: 10.1109/TAES.1983.309395
    [16] NANZER J A, SCHMID R L, COMBERIATE T M, et al. Open-loop coherent distributed arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1662–1672. doi: 10.1109/TMTT.2016.2637899
    [17] ELLISON S M, MGHABGHAB S, DOROSHEWITZ J J, et al. Combined wireless ranging and frequency transfer for internode coordination in open-loop coherent distributed antenna arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 68(1): 277–287. doi: 10.1109/TMTT.2019.2943292
    [18] MGHABGHAB S R and NANZER J A. Open-loop distributed beamforming using wireless frequency synchronization[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 896–905. doi: 10.1109/TMTT.2020.3022385
    [19] ELLISON S M, MGHABGHAB S R, and NANZER J A. Scalable high-accuracy ranging and wireless frequency synchronization for open-loop distributed phased arrays[C]. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, Springfield, USA, 2020: 41–44.
    [20] FLETCHER A S and ROBEY F C. Performance bounds for adaptive coherence of sparse array radar[C]. 11th Conference Adaptive Sensors Array Processing, Lexington, USA, 2003.
    [21] COUTTS S, CUOMO K, MCHARG J, et al. Distributed coherent aperture measurements for next generation BMD radar[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 390–393.
    [22] Committee on an Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives, Division on Engineering and Physical Sciences, and National Research Council of the National Academies. Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives[M]. Washington: National Academies Press, 2012: (4)6–(4)10.
    [23] MISHORY J. DOD advises against ‘Stacked’ AN/TPY-2 radars to boost missile defense[J]. Inside the Army, 2013, 25(17): 115–116.
    [24] Acquisition,Technology & Logistics Agency (ATLA). Electronic systems research center[EB/OL]. https://www.mod.go.jp/atla/en/densouken.html. 2019.
    [25] 鲁耀兵, 张履谦, 周荫清, 等 分布式阵列相参合成雷达技术研究[J]. 系统工程与电子技术, 2013, 35(8): 1657–1662.

    LU Yaobing, ZHANG Lüqian, ZHOU Yinqing, et al. Study on distributed aperture coherence-synthetic radar technology[J]. Systems Engineering and Electronics, 2013, 35(8): 1657–1662.
    [26] 鲁耀兵, 高红卫, 周宝亮. 分布式孔径相参合成雷达技术[J]. 雷达学报, 2017, 6(1): 55–64. doi: 10.12000/JR17014

    LU Yaobing, GAO Hongwei, and ZHOU Baoliang. Distributed aperture coherence-synthetic radar technology[J]. Journal of Radars, 2017, 6(1): 55–64. doi: 10.12000/JR17014
    [27] 周宝亮, 雷子健, 周东明, 等. 分布式孔径相参雷达预警探测技术[J]. 信号处理, 2018, 34(11): 1330–1338. doi: 10.16798/j.issn.1003-0530.2018.11.008

    ZHOU Baoliang, LEI Zijian, ZHOU Dongming, et al. Early-warning detection technology of distributed aperture coherent radar[J]. Journal of Signal Processing, 2018, 34(11): 1330–1338. doi: 10.16798/j.issn.1003-0530.2018.11.008
    [28] 殷丕磊. 地基宽带分布式全相参雷达技术研究[D]. [博士论文], 北京理工大学, 2016.

    YIN Pilei. Research on ground-based wideband distributed coherent aperture radar[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2016.
    [29] ZENG Tao, YIN Pilei, and LIU Quanhua. Wideband distributed coherent aperture radar based on stepped frequency signal: Theory and experimental results[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 672–688. doi: 10.1049/iet-rsn.2015.0221
    [30] YIN Pilei, YANG Xiaopeng, LIU Quanhua, et al. Wideband distributed coherent aperture radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1114–1117.
    [31] LIU Xinghua, XU Zhenhai, WANG Luoshengbin, et al. Dual-radar coherently combining: Generalised paradigm and verification example[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 689–699. doi: 10.1049/iet-rsn.2018.5089
    [32] LIU Xinghua, XU Zhenhai, LIU Xiang, et al. A clean signal reconstruction approach for coherently combining multiple radars[J]. EURASIP Journal on Advances in Signal Processing, 2018, 2018(1): 47. doi: 10.1186/s13634-018-0569-1
    [33] 刘兴华. 分布式多雷达认知协同探测技术研究[D]. [博士论文], 国防科技大学, 2019.

    LIU Xinghua. Research on cognitive collaboration technology of distributed radars[D]. [Ph.D. dissertation], National University of Defense Technology, 2019.
    [34] LIU Xinghua, XU Zhenhai, and XIAO Shunping. Performance gain bounds of coherently combining multiple radars in a target-based calibration manner[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 278–287. doi: 10.21629/JSEE.2019.02.07
    [35] VILNROTTER V, LEE D, CORNISH T, et al. Uplink arraying experiment with the Mars Global Surveyor spacecraft[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–166, 2006.
    [36] VILNROTTER V, LEE D, MUKAI R, et al. Three-antenna Doppler-delay imaging of the crater Tycho for uplink array calibration applications[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–169, 2007.
    [37] DAVARIAN F. Uplink arraying next steps[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–175, 2008.
    [38] VILNROTTER V, LEE D, TSAO P, et al. Uplink array calibration via lunar Doppler-delay imaging[C]. 2010 IEEE Aerospace Conference, Big Sky, USA, 2010: 1–12.
    [39] GELDZAHLER B J. Coherent uplink arraying techniques for next generation space communications and planetary radar systems[C]. SPIE 8040, Active and Passive Signatures II, Orlando, USA, 2011: 80400A.
    [40] GELDZAHLER B, MILLER M, BIRR R, et al. Field demonstration of coherent uplink from a phased array of widely separated antennas: Steps toward a verifiable real-time atmospheric phase fluctuation correction for a high resolution radar system[C]. Advanced Maui Optical and Space Surveillance Technologies (AMOS), Maui, USA, 2014.
    [41] GELDZAHLER B, BERSHAD C, BROWN R, et al. A phased array of widely separated antennas for space communication and planetary radar[C]. Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, Wailea, Hawaii, 2017.
    [42] 王虎, 韩长喜, 薛慧. 美国深空先进雷达发展研究[J]. 飞航导弹, 2021(12): 122–126, 145.

    WANG Hu, HAN Changxi, XUE Hui, United States deep space advanced radar development study[J]. Aerodynamic Missile Journal, 2021(12): 122–126, 145.
    [43] Johns HOPKINS. Johns Hopkins APL delivers new satellite tracking capability to U.S. space force[EB/OL]. https://www.jhuapl.edu/news/news-releases/220324-apl-delivers-satellite-tracking-capability-to-space-force, 2022.
    [44] SANCHEZ NET M, TAYLOR M, VILNROTTER V, et al. A ground-based planetary radar array[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–229, 2022.
    [45] 龙腾. “中国复眼”: 深空雷达探测面临的挑战与机遇[J]. 高科技与产业化, 2023, 29(4): 14–17.

    LONG Teng. China’s compound eye: Challenges and opportunities for deep space radardetection[J]. High-Technology & Commercialization, 2023, 29(4): 14–17.
    [46] THOMPSON A R, MORAN J M, and SWENSON JR G W. Interferometry and Synthesis in Radio Astronomy[M]. Cham: Springer, 2017: 44–56.
    [47] RAU U. Introduction to radio interferometry – algorithms and computing[EB/OL]. http://www.aoc.nrao.edu/~rurvashi/DataFiles/Talk_CHTCVisit_Intro_Radio_Interferometry_UR.pdf, 2019.
    [48] 彭勃, 金乘进, 杜彪, 等. 持续参与世界最大综合孔径望远镜SKA国际合作[J]. 中国科学: 物理学 力学 天文学, 2012, 42(12): 1292–1307. doi: 10.1360/132012-662

    PENG Bo, JIN Chengjin, DU Biao, et al. China’s participation in the SKA—the world’s largest synthesis radio telescope[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(12): 1292–1307. doi: 10.1360/132012-662
    [49] Focus on first Sgr A* results from the event horizon telescope[EB/OL]. https://iopscience.iop.org/journal/2041-8205/page/Focus_on_First_Sgr_A_Results, 2022.
    [50] 刘兴华, 徐振海, 肖顺平. 分布式相参雷达几何布置约束条件[J]. 系统工程与电子技术, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09

    LIU Xinghua, XU Zhenhai, and XIAO Shunping. Geometric arrangement constraints of distributed coherent aperture radar[J]. Systems Engineering and Electronics, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09
    [51] LEWANDOWSKI W, AZOUBIB J, and KLEPCZYNSKI W J. GPS: Primary tool for time transfer[J]. Proceedings of the IEEE, 1999, 87(1): 163–172. doi: 10.1109/5.736348
    [52] LOMBARDI M A, NELSON L M, NOVICK A N, et al. Time and frequency measurements using the global positioning system[J]. Cal Lab: International Journal of Metrology, 2001, 8(3): 26–33.
    [53] MERLO J M, MGHABGHAB S R, and NANZER J A. Wireless picosecond time synchronization for distributed antenna arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(4): 1720–1731. doi: 10.1109/TMTT.2022.3227878
    [54] KIRCHNER D. Two-way Satellite Time and Frequency Transfer (TWSTFT): Principle, Implementation, and Current Performance[M]. STONE W R. Review of Radio Science 1996–1999. Cambridge: Cambridge University Press, 1999: 27–44.
    [55] FUJIEDA M, GOTOH T, NAKAGAWA F, et al. Carrier-phase-based two-way satellite time and frequency transfer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(12): 2625–2630. doi: 10.1109/TUFFC.2012.2503
    [56] FUJIEDA M, GOTOH T, and AMAGAI J. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements[J]. Journal of Physics: Conference Series, 2016, 723: 012036. doi: 10.1088/1742-6596/723/1/012036
    [57] IEEE.1588-2019 IEEE Standard for a precision clock synchronization protocol for networked measurement and control systems[S]. Piscataway: IEEE, 2020: 1–499.
    [58] 李培基, 李卫, 朱祥维, 等. 网络时间同步协议综述[J]. 计算机工程与应用, 2019, 55(3): 30–38. doi: 10.3778/j.issn.1002-8331.1809-0008

    LI Peiji, LI Wei, ZHU Xiangwei, et al. Overview of network time synchronization protocol[J]. Computer Engineering and Applications, 2019, 55(3): 30–38. doi: 10.3778/j.issn.1002-8331.1809-0008
    [59] MGHABGHAB S, OUASSAL H, and NANZER J A. Wireless frequency synchronization for coherent distributed antenna arrays[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019: 1575–1576.
    [60] MGHABGHAB S R, SCHLEGEL A, and NANZER J A. Adaptive distributed transceiver synchronization over a 90 m microwave wireless link[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(5): 3688–3699. doi: 10.1109/TAP.2021.3138506
    [61] RASHID M and NANZER J A. Frequency and phase synchronization in distributed antenna arrays based on consensus averaging and Kalman filtering[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2789–2803. doi: 10.1109/TWC.2022.3213788
    [62] 杨文哲, 杨宏雷, 赵环, 等. 光纤时频传递技术进展[J]. 时间频率学报, 2019, 42(3): 214–223. doi: 10.13875/j.issn.1674-0637.2019-03-0214-10

    YANG Wenzhe, YANG Honglei, ZHAO Huan, et al. Technical progress of fiber-based time and frequency transfer[J]. Journal of Time and Frequency, 2019, 42(3): 214–223. doi: 10.13875/j.issn.1674-0637.2019-03-0214-10
    [63] 曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104
    [64] SEO M, RODWELL M, and MADHOW U. A feedback-based distributed phased array technique and its application to 60-GHz wireless sensor network[C]. 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, USA, 2008: 683–686.
    [65] BIDIGARE P, OYARZYN M, RAEMAN D, et al. Implementation and demonstration of receiver-coordinated distributed transmit beamforming across an ad-hoc radio network[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 222–226.
    [66] SUN Peilin, TANG Jun, HE Qian, et al. Cramer-Rao bound of parameters estimation and coherence performance for next generation radar[J]. IET Radar, Sonar & Navigation, 2013, 7(5): 553–567. doi: 10.1049/iet-rsn.2012.0139
    [67] 梁益丰, 许江宁, 吴苗, 等. 光纤时频同步技术的研究进展[J]. 激光与光电子学进展, 2020, 57(5): 050004. doi: 10.3788/LOP57.050004

    LIANG Yifeng, XU Jiangning, WU Miao, et al. Research progress on optical fiber time-frequency synchronization technology[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050004. doi: 10.3788/LOP57.050004
    [68] KAUR N, FRANK F, PINTO J, et al. A 500-km cascaded white rabbit link for high-performance frequency dissemination[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(2): 892–901.
    [69] 全洪雷, 薛文祥, 赵文宇, 等. 国家授时中心高精度光纤微波频率传递研究进展[J]. 时间频率学报, 2021, 44(4): 255–265. doi: 10.13875/j.issn.1674-0637.2021-04-0255-11

    QUAN Honglei, XUE Wenxiang, ZHAO Wenyu, et al. Progress of high-resolution fiber-based microwave frequency dissemination in NTSC[J]. Journal of Time and Frequency, 2021, 44(4): 255–265. doi: 10.13875/j.issn.1674-0637.2021-04-0255-11
    [70] DIDDAMS S A, VAHALA K, and UDEM T. Optical frequency combs: Coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369(6501): eaay3676. doi: 10.1126/science.aay3676
    [71] 袁一博. 光纤网络时间频率传输与同步技术研究[D]. [博士论文], 清华大学, 2017.

    YUAN Yibo. The research on fiber-based time and frequency dissemination and sychronization technique[D]. [Ph.D. dissertation], Tsinghua University, 2017.
    [72] CLIVATI C, AIELLO R, BIANCO G, et al. Common-clock very long baseline interferometry using a coherent optical fiber link[J]. Optica, 2020, 7(8): 1031–1037. doi: 10.1364/OPTICA.393356
    [73] SHEN Qi, GUAN Jianyu, REN Jigang, et al. Free-space dissemination of time and frequency with 10−19 instability over 113 km[J]. Nature, 2022, 610(7933): 661–666. doi: 10.1038/s41586-022-05228-5
    [74] 宋靖, 牛朝阳, 张剑云. 分布式全相参雷达正交频分LFM信号设计及性能分析[J]. 中国科学: 信息科学, 2015, 45(8): 968–984. doi: 10.1360/N112014-00185

    SONG Jing, NIU Zhaoyang, and ZHANG Jianyun. OFD-LFM signal design and performance analysis for distributed aperture fully coherent radar[J]. SCIENTIA SINICA Informationis, 2015, 45(8): 968–984. doi: 10.1360/N112014-00185
    [75] 宋靖, 周青松, 张剑云. 基于相关法的分布式全相参雷达相干参数估计及相参性能[J]. 电子与信息学报, 2015, 37(7): 1710–1715. doi: 10.11999/JEIT141339

    SONG Jing, ZHOU Qingsong, and ZHANG Jianyun. Coherent parameters estimation by cross-correlation for distributed aperture fully coherent radar[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1710–1715. doi: 10.11999/JEIT141339
    [76] 陈金铭, 王彤, 吴建新, 等. 基于滤波器网格失配的分布式相参雷达目标参数估计方法[J]. 系统工程与电子技术, 2019, 41(11): 2460–2470. doi: 10.3969/j.issn.1001-506X.2019.11.09

    CHEN Jinming, WANG Tong, WU Jianxin, et al. Target parameter estimation method for distributed coherent aperture radar based on grid mismatch filtering[J]. Systems Engineering and Electronics, 2019, 41(11): 2460–2470. doi: 10.3969/j.issn.1001-506X.2019.11.09
    [77] MGHABGHAB S and NANZER J A. Ranging requirements for open-loop coherent distributed arrays with wireless frequency synchronization[C]. 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting, Montreal, Canada, 2020: 69–70.
    [78] ELLISON S M and NANZER J A. High-accuracy multinode ranging for coherent distributed antenna arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4056–4066. doi: 10.1109/TAES.2020.2985251
    [79] HODKIN J E, ZILEVU K S, SHARP M D, et al. Microwave and millimeter-wave ranging for coherent distributed RF systems[C]. 2015 IEEE Aerospace Conference, Big Sky, USA, 2015: 1–7.
    [80] ELLISON S M, MGHABGHAB S R, and NANZER J A. Multi-node open-loop distributed beamforming based on scalable, high-accuracy ranging[J]. IEEE Sensors Journal, 2022, 22(2): 1629–1637. doi: 10.1109/JSEN.2021.3130793
    [81] LIU Xiaoyu, WANG Tong, CHEN Jinming, et al. Efficient configuration calibration in airborne distributed radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1799–1817. doi: 10.1109/TAES.2021.3139431
    [82] CHEN Jinming, WANG Tong, LIU Xiaoyu, et al. Identifiability analysis of positioning and synchronization errors in airborne distributed coherence aperture radars[J]. IEEE Sensors Journal, 2022, 22(6): 5978–5993. doi: 10.1109/JSEN.2022.3144481
    [83] 陈金铭, 王彤, 吴建新, 等. 基于特显点的机载分布式相参雷达同步误差校正方法[J]. 电子与信息学报, 2021, 43(2): 356–363. doi: 10.11999/JEIT190694

    CHEN Jinming, WANG Tong, WU Jianxin, et al. Airborne distributed coherent aperture radar synchronization error calibration method based on prominent points[J]. Journal of Electronics & Information Technology, 2021, 43(2): 356–363. doi: 10.11999/JEIT190694
    [84] CHEN Jinming, WANG Tong, LIU Xiaoyu, et al. Time and phase synchronization using clutter observations in airborne distributed coherent aperture radars[J]. Chinese Journal of Aeronautics, 2022, 35(3): 432–449. doi: 10.1016/j.cja.2021.08.040
    [85] ZHOU Dingsen, YANG Minglei, YANG Rong, et al. Distributed coherent aperture radar on moving platforms: Theoretical study and tests[C]. 2022 16th IEEE International Conference on Signal Processing, Beijing, China, 2022: 518–523.
    [86] OUASSAL H, YAN Ming, and NANZER J A. Decentralized frequency alignment for collaborative beamforming in distributed phased arrays[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6269–6281. doi: 10.1109/TWC.2021.3073120
    [87] OUASSAL H, ROCCO T, YAN Ming, et al. Decentralized frequency synchronization in distributed antenna arrays with quantized frequency states and directed communications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5280–5288. doi: 10.1109/TAP.2020.2977751
    [88] XIAO Xuedi, LI Shangyuan, XUE Xiaoxiao, et al. Photonics-assisted broadband distributed coherent aperture radar for high-precision imaging of dim-small targets[J]. IEEE Photonics Journal, 2019, 11(5): 5502709. doi: 10.1109/JPHOT.2019.2934472
    [89] 李尚远, 肖雪迪, 郑小平. 基于微波光子学的分布式相参孔径雷达[J]. 雷达学报, 2019, 8(2): 178–188. doi: 10.12000/JR19024

    LI Shangyuan, XIAO Xuedi, and ZHENG Xiaoping. Distributed coherent aperture radar enabled by microwave photonics[J]. Journal of Radars, 2019, 8(2): 178–188. doi: 10.12000/JR19024
    [90] LEMBO L, MARESCA S, SERAFINO G, et al. In-field demonstration of a photonic coherent MIMO distributed radar network[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6.
    [91] 吴剑旗, 戴晓霖, 杨利民, 等. 一种大基线分布雷达近场相参探测技术[J]. 雷达科学与技术, 2020, 18(6): 579–583. doi: 10.3969/j.issn.1672-2337.2020.06.001

    WU Jianqi, DAI Xiaolin, YANG Limin, et al. Study on a near-field coherent detection technology for long-baseline distributed radar[J]. Radar Science and Technology, 2020, 18(6): 579–583. doi: 10.3969/j.issn.1672-2337.2020.06.001
    [92] 臧会凯, 雷欢, 但晓东, 等. 分布式雷达相参发射原理与性能分析[J]. 电子与信息学报, 2015, 37(8): 1801–1807. doi: 10.11999/JEIT141563

    ZANG Huikai, LEI Huan, DAN Xiaodong, et al. Theory and performance analysis of coherent transmission for distributed radars[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1801–1807. doi: 10.11999/JEIT141563
    [93] 王元昊, 王宏强, 刘兴华, 等. 分布式相参雷达相参效率及相参景深研究[J/OL]. 系统工程与电子技术, 1–13. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1852.012.html, 2023.

    WANG Yuanhao, WANG Hongqiang, LIU Xinghua, et al. Research on transmit coherent synthesis efficiency and coherent depth of field of distributed coherent aperture radar[J/OL]. Systems Engineering and Electronics, 1–13. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1852.012.html, 2023.
    [94] VILNROTTER V, JAO J, GIORGINI J, et al. Proving the uplink array for radar observations[R]. California: Jet Propulsion Laboratory IPN Progress Report 42–223, 2020.
    [95] VILNROTTER V, GIORGINI J, JAO J, et al. Development of an uplink array radar system for cis-lunar and planetary observations[C]. 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–8.
    [96] CUOMO K M, PIOU J E, and MAYHAN J T. Ultra-wideband coherent processing[J]. The Lincoln Laboratory Journal, 1997, 10(2): 203–222.
    [97] YANG Xiaopeng, YIN Pilei, ZENG Tao, et al. Applying auxiliary array to suppress mainlobe interference for ground-based radar[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 433–436. doi: 10.1109/LAWP.2013.2254698
    [98] ZHANG Honggang, LUO Jian, CHEN Xinliang, et al. Whitening filter for mainlobe interference suppression in distributed array radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  1733
  • HTML全文浏览量:  685
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-19
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回