MCJ-UNet:一种双/多通道联合InSAR相位解缠网络

丁泽刚 孙涛 王震 赵健 史一鹏 陈浩龙 陈之洲 王岩 曾涛

丁泽刚, 孙涛, 王震, 等. MCJ-UNet:一种双/多通道联合InSAR相位解缠网络[J]. 雷达学报(中英文), 2024, 13(1): 97–115. doi: 10.12000/JR23185
引用本文: 丁泽刚, 孙涛, 王震, 等. MCJ-UNet:一种双/多通道联合InSAR相位解缠网络[J]. 雷达学报(中英文), 2024, 13(1): 97–115. doi: 10.12000/JR23185
DING Zegang, SUN Tao, WANG Zhen, et al. MCJ-UNet: A dual/multi-channel-joint phase unwrapping network for interferometric SAR[J]. Journal of Radars, 2024, 13(1): 97–115. doi: 10.12000/JR23185
Citation: DING Zegang, SUN Tao, WANG Zhen, et al. MCJ-UNet: A dual/multi-channel-joint phase unwrapping network for interferometric SAR[J]. Journal of Radars, 2024, 13(1): 97–115. doi: 10.12000/JR23185

MCJ-UNet:一种双/多通道联合InSAR相位解缠网络

DOI: 10.12000/JR23185
基金项目: 国家自然科学基金(62227901),国家自然科学基金重点项目(61931002)
详细信息
    作者简介:

    丁泽刚,博士,教授,博士生导师,主要研究方向为新体制雷达成像机理、成像处理和图像信息提取

    孙 涛,硕士生,主要研究方向为干涉合成孔径雷达及深度学习技术

    王 震,博士,主要研究方向为干涉、层析、差分层析合成孔径雷达技术

    赵 健,硕士生,主要研究方向为层析及差分层析合成孔径雷达技术

    史一鹏,硕士生,主要研究方向为干涉合成孔径雷达技术

    陈浩龙,硕士生,主要研究方向为合成孔径雷达全链路仿真及三维重构

    陈之洲,硕士生,主要研究方向为合成孔径雷达成像及干涉处理技术

    王 岩,博士,副教授,博士生导师,主要研究方向为新体制雷达系统、成像、干涉和极化应用

    曾 涛,博士,教授,博士生导师,主要研究方向为雷达信息、信号处理与系统设计

    通讯作者:

    王震 wangzhenbit@163.com

  • 责任主编:禹卫东 Corresponding Editor: YU Weidong
  • 中图分类号: TN957.52

MCJ-UNet: A Dual/Multi-channel-joint Phase Unwrapping Network for Interferometric SAR

Funds: The National Natural Science Foundation of China (62227901), The Key Program of the National Natural Science Foundation of China (61931002)
More Information
  • 摘要: 干涉合成孔径雷达(InSAR)可实现地表高程的高效获取,在地形测绘中应用广泛。双/多通道InSAR技术可借助不同通道(基线、频点)的高程模糊度差异,解决相位欠采样问题,完成高程陡变区域的干涉相位解缠,实现InSAR技术在测绘困难区域的有效应用。该文即面向高效高精度相位解缠需求,利用深度学习这一有力工具,结合不同通道的相位特征及相互约束关系,提出了一种双/多通道联合干涉相位解缠网络:Multi-Channel-Joint-UNet (MCJ-UNet)。该网络的构建以双通道(双频、双基线) InSAR为基本观测构型,并可实现向多通道构型的扩展,其构建的核心思路主要包括3点:首先,将干涉相位解缠中的模糊数估计问题转化为语义分割问题,并采用UNet网络完成分割处理;其次,引入挤压激励模块(SE)动态调整信息权重,以增强网络不同通道对其所需信息的感知能力;最后,利用多通道联合约束下的相位残差优化损失函数,实现网络调谐。此外,为避免语义分割结果的边缘细节误差对解缠效果的影响,该文还提出了一种基于多通道联合约束的解缠误差自修正方法,以保证解缠质量。模拟地形仿真数据、真实地形仿真数据以及TerraSAR-X实测数据验证了所提方法的有效性。

     

  • 图  1  相位解缠示意

    Figure  1.  Schematic diagram of phase unwrapping

    图  2  模糊数聚类示意

    Figure  2.  Schematic diagram of the ambiguity number clustering

    图  3  MCJ-UNet网络结构图

    Figure  3.  The structure of MCJ-UNet network

    图  4  SE模块

    Figure  4.  SE module

    图  5  网络训练流程图

    Figure  5.  Flowchart of network training

    图  6  仿真地形构造示意

    Figure  6.  Schematic diagram of simulated terrain construction

    图  7  增添纹理前后缠绕相位对比

    Figure  7.  Comparison of wrapped phase before and after adding texture

    图  8  多通道缠绕相位及标签

    Figure  8.  Multi-channel wrapped phase and label

    图  9  仿真DEM及信噪比分布情况

    Figure  9.  Simulated DEM and SNR distribution

    图  10  双频点参考相位

    Figure  10.  Reference phase of dual frequency channels

    图  11  双频点(含噪声)干涉图

    Figure  11.  The interferograms of dual-frequency channels

    图  12  基于MCJ-UNet所获取的模糊数估计结果

    Figure  12.  Ambiguity number estimation results obtained based on MCJ-UNet

    图  13  仿真数据各方法解缠结果对比

    Figure  13.  Comparison of results for different methods on simulated data

    图  14  地形参考高程及多频干涉图

    Figure  14.  Reference terrain height and multi-frequency interferograms

    图  15  参考相位及各方法解缠结果对比

    Figure  15.  Reference phase and comparison of unwrapped phase obtained by different methods

    图  16  多基线InSAR实测数据

    Figure  16.  Real InSAR data of multi-baseline

    图  17  实测数据各方法解缠结果对比

    Figure  17.  Comparison of unwrapped phase obtained by different methods for real data

    表  1  模拟地形仿真参数

    Table  1.   Simulation parameters of simulated terrain

    参数 数值
    下视角 30°
    频点1 5.25 GHz
    频点2 11.50 GHz
    图像尺寸 512×512
    信噪比 2~5 dB
    下载: 导出CSV

    表  2  各方法所获取的仿真地形解缠相位评估结果

    Table  2.   Evaluation results of the unwrapped phase of simulated terrain obtained by different methods

    处理方法 RMSE
    (rad)
    网络运行
    时间(s)
    后处理时间(s)
    MLE 2.49 28.4
    TSPA 4.41 95.9
    CANet 1.27 1.9 34.7
    MCJ-UNet 1.38 2.1 2.1
    下载: 导出CSV

    表  3  真实地形仿真参数

    Table  3.   Simulation parameters of real terrain

    参数数值
    下视角30°
    频点16.20 GHz
    频点211.50 GHz
    卫星轨道高度500 km
    基线长度205 m
    图像尺寸512×160
    信噪比7.5 dB
    下载: 导出CSV

    表  4  各方法所获取真实地形仿真相位解缠评估结果

    Table  4.   Evaluation results of real terrain simulation phase unwrapping obtained by different methods

    处理方法 RMSE (rad) 网络运行时间(s) 后处理时间(s)
    MLE 5.50 9.1
    TSPA 3.52 24.3
    CANet 2.78 1.4 8.6
    MCJ-UNet通道1 2.92 1.9
    MCJ-UNet通道2 2.85 1.9
    MCJ-UNet 2.55 1.9 0.6
    下载: 导出CSV

    表  5  多基线InSAR实测数据主要参数

    Table  5.   Main parameters of multi-baseline InSAR real data

    参数数值
    成像模式条带
    载频9.65 GHz
    入射角33.14°
    距离向分辨率2.1 m
    方位向分辨率3.3 m
    基线1长度25.92 m
    基线2长度67.63 m
    图像尺寸4096×4096
    下载: 导出CSV

    表  6  各方法所获取实测数据解缠相位评估结果

    Table  6.   Evaluation results of unwrapped phase of real data obtained by different methods

    处理方法 RMSE (rad) 网络运行
    时间(s)
    后处理时间(s)
    MLE 4.91 1817.3
    TSPA 1.82 15368.6
    CANet 1.58 20.4 2884.2
    MCJ-UNet通道1 1.97 22.6
    MCJ-UNet通道2 1.86 22.6
    MCJ-UNet 1.61 22.6 138.2
    下载: 导出CSV

    表  7  各对比方法的分类准确率及训练时间

    Table  7.   Classification accuracy and training time of each comparison method

    方法 指标
    方法
    编号
    网络结构
    是否加入
    SE模块
    损失函数
    是否加入
    残差优化项
    通道1分类
    准确率(%)
    通道2分类
    准确率(%)
    训练时间(s)
    1 92.50 91.14 11374.64
    2 93.41 93.09 14727.56
    3 96.83 95.98 12054.28
    4 97.22 97.03 15236.20
    下载: 导出CSV
  • [1] BAMLER R and HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): R1–R54. doi: 10.1088/0266-5611/14/4/001
    [2] BÜRGMANN R, ROSEN P A, and FIELDING E J. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 169–209. doi: 10.1146/annurev.earth.28.1.169
    [3] ITOH K. Analysis of the phase unwrapping algorithm[J]. Applied Optics, 1982, 21(14): 2470. doi: 10.1364/AO.21.002470
    [4] EINEDER M and KRIEGER G. Interferometric digital elevation model reconstruction-experiences from SRTM and multi channel approaches for future missions[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea (South), 2005: 2664–2667.
    [5] JORDAN R L, HUNEYCUTT B L, and WERNER M. The SIR-C/X-SAR synthetic aperture radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 829–839.
    [6] 林圣, 王震, 丁泽刚, 等. 多频干涉SAR局部条纹频率估计方法[J]. 信号处理, 2017, 33(3): 314–318. doi: 10.16798/j.issn.1003-0530.2017.03.009

    LIN Sheng, WANG Zhen, DING Zegang, et al. Local fringe frequencies estimation method based on multi-frequency InSAR[J]. Journal of Signal Processing, 2017, 33(3): 314–318. doi: 10.16798/j.issn.1003-0530.2017.03.009
    [7] GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278
    [8] ZHU Xiaoxiang, WANG Yuanyuan, MONTAZERI S, et al. A review of ten-year advances of multi-baseline SAR interferometry using TerraSAR-X data[J]. Remote Sensing, 2018, 10(9): 1374. doi: 10.3390/rs10091374
    [9] DING Zegang, WANG Zhen, WANG Yan, et al. Refined multifrequency interferometric SAR phase unwrapping for extremely steep terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5221320. doi: 10.1109/TGRS.2022.3142996
    [10] DING Zegang, WANG Zhen, LIN Sheng, et al. Local fringe frequency estimation based on multifrequency InSAR for phase-noise reduction in highly sloped terrain[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1527–1531. doi: 10.1109/LGRS.2017.2720695
    [11] PASCAZIO V and SCHIRINZI G. Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters[J]. IEEE Transactions on Image Processing, 2002, 11(12): 1478–1489. doi: 10.1109/TIP.2002.804274
    [12] FERRAIOLI G, SHABOU A, TUPIN F, et al. Multichannel phase unwrapping with graph cuts[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 562–566. doi: 10.1109/LGRS.2009.2021165
    [13] XU Wei, CHANG E C, KWOH L K, et al. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline[C]. 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2007: 730–732.
    [14] YU Hanwen, LI Zhenfang, and BAO Zheng. A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 478–487. doi: 10.1109/TGRS.2010.2055569
    [15] FORNARO G, PAUCIULLO A, and SANSOSTI E. Phase difference-based multichannel phase unwrapping[J]. IEEE Transactions on Image Processing, 2005, 14(7): 960–972. doi: 10.1109/TIP.2005.849302
    [16] ZENG Tao, LIU Tiandong, DING Zegang, et al. Phase unwrapping method based on multi-frequency InSAR in highly sloped terrain[J]. Electronics Letters, 2016, 52(12): 1058–1059. doi: 10.1049/el.2015.3795
    [17] 葛仕奇, 陈亮, 丁泽刚, 等. 利用梯度重建的稳健多频InSAR相位解缠方法[J]. 测绘学报, 2013, 42(3): 367–373, 396.

    GE Shiqi, CHEN Liang, DING Zegang, et al. A robust multi-frequency phase unwrapping[J]. Acta Geodaetica et Cartographiea Siniea, 2013, 42(3): 367–373, 396.
    [18] YU Hanwen and LAN Yang. Robust two-dimensional phase unwrapping for multibaseline SAR interferograms: A two-stage programming approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5217–5225. doi: 10.1109/tgrs.2016.2558541
    [19] ZHOU Lifan, YU Hanwen, LAN Yang, et al. Deep learning-based branch-cut method for InSAR two-dimensional phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5209615. doi: 10.1109/TGRS.2021.3099997
    [20] ZHOU Lifan, YU Hanwen, and LAN Yang. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4653–4665. doi: 10.1109/TGRS.2020.2965918
    [21] WANG Kaiqiang, LI Ying, KEMAO Q, et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 2019, 27(10): 15100–15115. doi: 10.1364/OE.27.015100
    [22] ZHOU Lifan, YU Hanwen, LAN Yang, et al. CANet: An unsupervised deep convolutional neural network for efficient cluster-analysis-based multibaseline InSAR phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5212315. doi: 10.1109/TGRS.2021.3110518
    [23] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [24] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [25] 黄国满. 机载多波段多极化干涉SAR测图系统—CASMSAR[J]. 测绘科学, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011

    HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization—CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011
    [26] 周良将, 汪丙南, 王亚超, 等. 机载多维度SAR航空观测系统实验初步进展[J]. 电子与信息学报, 2023, 45(4): 1243–1253. doi: 10.11999/JEIT220250

    ZHOU Liangjiang, WANG Bingnan, WANG Yachao, et al. Preliminary process of airborne multidimensional space joint-observation SAR system[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1243–1253. doi: 10.11999/JEIT220250
    [27] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [28] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027
    [29] WANG Wenjie and XIA Xianggen. A closed-form robust Chinese remainder theorem and its performance analysis[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5655–5666. doi: 10.1109/TSP.2010.2066974
    [30] SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [31] 杨真真, 孙雪, 邵静, 等. 基于多尺度偶数卷积注意力U-Net的医学图像分割[J]. 信号处理, 2022, 38(9): 1912–1921. doi: 10.16798/j.issn.1003-0530.2022.09.014

    YANG Zhenzhen, SUN Xue, SHAO Jing, et al. Medical image segmentation based on multiscale even convolution attention U-Net[J]. Journal of Signal Processing, 2022, 38(9): 1912–1921. doi: 10.16798/j.issn.1003-0530.2022.09.014
    [32] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [33] 梁峰, 谢先明, 徐有邈, 等. 一种改进的U-Net相位解缠方法[J]. 遥感信息, 2021, 36(5): 134–141. doi: 10.3969/j.issn.1000-3177.2021.05.018

    LIANG Feng, XIE Xianming, XU Youmiao, et al. An improved U-Net phase unwrapping method[J]. Remote Sensing Information, 2021, 36(5): 134–141. doi: 10.3969/j.issn.1000-3177.2021.05.018
    [34] KINGMA D P and BA J. Adam: A method for stochastic optimization[EB/OL]. https://doi.org/10.48550/arXiv.1412.6980.
    [35] LOSHCHILOV I and HUTTER F. SGDR: Stochastic gradient descent with warm restarts[EB/OL]. https://doi.org/10.48550/arXiv.1608.03983.
    [36] GOLDSTEIN R M and WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035–4038. doi: 10.1029/1998GL900033
    [37] ASF data search vertex[EB/OL]. https://search.asf.alaska.edu/, 2023.
    [38] GESCH D B, OIMOEN M J, and EVANS G A. Accuracy assessment of the U.S. Geological Survey national elevation dataset, and comparison with other large-area elevation datasets: SRTM and ASTER[R]. Open-File Report 2014-1008, 2014.
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  344
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-04
  • 修回日期:  2024-01-08
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回