机载多通道广角凝视SAR地面动目标指示技术研究

安道祥 葛蓓蓓 王武 陈乐平 冯东 周智敏

安道祥, 葛蓓蓓, 王武, 等. 机载多通道广角凝视SAR地面动目标指示技术研究[J]. 雷达学报, 2023, 12(6): 1179–1201. doi: 10.12000/JR23147
引用本文: 安道祥, 葛蓓蓓, 王武, 等. 机载多通道广角凝视SAR地面动目标指示技术研究[J]. 雷达学报, 2023, 12(6): 1179–1201. doi: 10.12000/JR23147
AN Daoxiang, GE Beibei, WANG Wu, et al. Research on the technology of airborne multi-channel wide angle staring SAR ground moving target indication[J]. Journal of Radars, 2023, 12(6): 1179–1201. doi: 10.12000/JR23147
Citation: AN Daoxiang, GE Beibei, WANG Wu, et al. Research on the technology of airborne multi-channel wide angle staring SAR ground moving target indication[J]. Journal of Radars, 2023, 12(6): 1179–1201. doi: 10.12000/JR23147

机载多通道广角凝视SAR地面动目标指示技术研究

DOI: 10.12000/JR23147
基金项目: 湖南省自然科学杰出青年基金(2022JJ10062),国家自然科学基金(62271492, 62101562, 62101566)
详细信息
    作者简介:

    安道祥,博士,副教授,主要研究方向为机载单/双站低频UWB SAR成像、机载WasSAR成像与动目标检测跟踪、SAR目标数据构建与智能解译、机载重轨低频InSAR技术等

    葛蓓蓓,博士,助理研究员,主要研究方向为机载雷达、机载WasSAR-GMTI技术

    王 武,博士,工程师,主要研究方向为合成孔径雷达成像与动目标指示技术

    陈乐平,博士,副教授,主要研究方向为高分辨率CSAR成像技术

    冯 东,博士,讲师,主要研究方向为高分辨SAR三维成像技术

    周智敏,博士,教授,主要研究方向为超宽带雷达技术

    通讯作者:

    安道祥 daoxiangan@nudt.edu.cn

  • 责任主编:廖桂生 Corresponding Editor: LIAO Guisheng
  • 中图分类号: TN959.4

Research on the Technology of Airborne Multi-channel Wide Angle Staring SAR Ground Moving Target Indication

Funds: The Natural Science Fund for Distinguished Young Scholars of Hunan Province (2022JJ10062), The National Natural Science Foundation of China (62271492, 62101562, 62101566)
More Information
  • 摘要: 机载广角凝视合成孔径雷达(WasSAR)是一种可对观测区域实施多角度长时间凝视成像探测的新兴SAR成像技术。将机载WasSAR成像与地面运动目标指示(GMTI)技术相结合,则可对重点区域内出现的地面运动目标实施持续成像跟踪监视,从而获取准确的动态感知信息。该文首先建立了机载多通道WasSAR动目标回波模型,分析了WasSAR动目标特性;然后,通过采用偏移相位校正和改进二维自适应校正方法,消除了载机姿态误差与通道非均衡的影响;在此基础上,提出了机载多通道WasSAR动目标检测跟踪算法,实现了复杂路况上行驶动目标的准确检测与跟踪;最后,提出了机载多通道WasSAR动目标行驶轨迹重构算法,实现了起伏路面下的动目标行驶轨迹精确重构。此外,该文中给出了作者团队利用自主研制机载多通道WasSAR-GMTI系统开展的外场飞行试验和实测数据处理结果,验证了地面运动目标持续跟踪监视的有效性和实用性,为后续开展更加深入的研究提供基础。

     

  • 图  1  机载多通道WasSAR成像几何

    Figure  1.  The imaging geometry of multi-channel airborne WasSAR

    图  2  机载多通道WasSAR天线配置方式

    Figure  2.  The antenna setting of multi-channel airborne WasSAR

    图  3  两种不同运动的仿真实验结果

    Figure  3.  The simulation results of two typical motions

    图  4  静止目标成像

    Figure  4.  The results of stationary target

    图  5  ${v_x} = 0.6\;{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ 时的运动目标成像

    Figure  5.  The imaging results of moving target ( ${v_x} = 0.6\;{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ )

    图  6  ${v_y} = 0.2\;{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ 时的运动目标成像

    Figure  6.  The imaging results of moving target ( ${v_y} = 0.2\;{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ )

    图  7  ${v_y} = 2\;{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ 时的运动目标成像

    Figure  7.  The imaging results of moving target ( ${v_y} = 2\;{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ )

    图  8  平台姿态误差模型

    Figure  8.  The model of platform error

    图  9  偏移相位校正流程图

    Figure  9.  The flowchart of group phase shift calibration

    图  10  偏移相位校正结果对比

    Figure  10.  The comparison results of group phase shift calibration

    图  11  双通道WasSAR-GMTI检测结果

    Figure  11.  The detection results of dual-channel WasSAR-GMTI

    图  12  MA2DC处理流程图

    Figure  12.  The flowchart of MA2DC

    图  13  通道误差校正后的RD域干涉相位结果

    Figure  13.  The results of interferometric phase after channel error calibration

    图  14  通道误差校正后的图像域DPCA检测结果与ATI检测结果

    Figure  14.  The detection results of DPCA and ATI after channel error calibration

    图  15  机载多通道WasSAR动目标检测与跟踪处理流程图

    Figure  15.  The processing flow of moving target detection and tracking in WasSAR

    图  16  机载WasSAR子孔径回波、CSI及RELAX检测结果

    Figure  16.  The sub-aperture echo of airborne WasSAR, CSI and RELAX detection results

    图  17  不同跟踪算法下的RD域多目标轨迹对比图

    Figure  17.  The comparison results of multiple target trajectory in RD domain by different tracking algorithms

    图  18  机载WasSAR成像几何示意图

    Figure  18.  The imaging geometry of airborne WasSAR

    图  19  TSPE处理流程图

    Figure  19.  The flowchart of TSPE method

    图  20  实验合作车辆

    Figure  20.  The cooperative vehicles for the experiment

    图  21  合作车辆目标的多子孔径轨迹重构结果

    Figure  21.  The multi channel trajectory reconstruction of cooperative targets

    图  22  高度与坡度对目标定位的影响

    Figure  22.  The influence of altitude and slope on positioning

    图  23  起伏路面下的运动目标轨迹重构处理流程图

    Figure  23.  The processing flow of 3-D moving target trajectory reconstruction

    图  24  起伏路面下运动目标的原始观测几何与等效观测几何

    Figure  24.  The real geometry and equivalence of 3-D moving target

    图  25  观测场景图像

    Figure  25.  The images of observation scene

    图  26  观测场景中的拱桥与合作车辆

    Figure  26.  The pictures of arch bridge and cooperative pickup truck of observation scene

    图  27  起伏路面动目标三维速度估计结果与三维位置重构结果

    Figure  27.  The three-dimensional velocity estimation and trajectory reconstruction of moving target in the three-dimensional field

    表  1  机载WasSAR系统仿真参数

    Table  1.   The simulated parameters of airborne WasSAR system

    参数 数值 参数 数值
    飞行半径 ${r_{\text{a}}}$ 2000 m 工作频段 Ku波段
    飞行高度H 2000 m 距离分辨率 ${\rho _{\text{r}}}$ 0.167 m
    飞机速度 ${v_{\text{a}}}$ 180 km/h 脉冲重复频率 ${\text{PRF}}$ 3125 Hz
    下载: 导出CSV
  • [1] CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 13–78.
    [2] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
    [3] 王广学. UWB SAR叶簇隐蔽目标变化检测技术研究[D]. [博士论文], 国防科学技术大学, 2011.

    WANG Guangxue. Foliage-concealed target change detection for UWB SAR[D]. [Ph.D. dissertation], National University of Defense Technology, 2011.
    [4] 李田, 程晓, 关真富, 等. 基于SAR数据的南极冰山分布监测[J]. 南京信息工程大学学报: 自然科学版, 2020, 12(2): 231–235. doi: 10.13878/j.cnki.jnuist.2020.02.011

    LI Tian, CHENG Xiao, GUAN Zhenfu, et al. Investigation of Antarctic iceberg distribution based on SAR images[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2020, 12(2): 231–235. doi: 10.13878/j.cnki.jnuist.2020.02.011
    [5] XIANG Deliang, TANG Tao, BAN Yifang, et al. Man-made target detection from polarimetric SAR data via nonstationarity and asymmetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1459–1469. doi: 10.1109/jstars.2016.2520518
    [6] Nepal earthquake displacement[EB/OL]. http://www.esa.int/ESA_Multimedia/Images/2015/04/Nepal_earthquake_displacement, 2015.
    [7] HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation via time-Doppler chirp-varying approach for single-channel airborne SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4367–4383. doi: 10.1109/tgrs.2017.2691742
    [8] DA SILVA A B C, JOSHI S K, BAUMGARTNER S V, et al. Phase correction for accurate DOA angle and position estimation of ground-moving targets using multi-channel airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4021605. doi: 10.1109/LGRS.2022.3144735
    [9] KIRSCHT M. Detection and imaging of arbitrarily moving targets with single-channel SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2003, 150(1): 7–11. doi: 10.1049/ip-rsn:20030076
    [10] SUWA K, YAMAMOTO K, TSUCHIDA M, et al. Image-based target detection and radial velocity estimation methods for multichannel SAR-GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1325–1338. doi: 10.1109/tgrs.2016.2622712
    [11] 贺雄鹏. 阵列雷达宽幅地面运动目标检测方法研究[D]. [博士论文], 西安电子科技大学, 2020.

    HE Xiongpeng. An investigation of ground moving target detection approaches for wide-swath array radar[D]. [Ph.D. dissertation], Xidian University, 2020.
    [12] SCARBOROUGH S M, CASTEEL JR C H, GORHAM L, et al. A challenge problem for SAR-based GMTI in urban environments[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, USA, 2009: 73370G.
    [13] SOUMEKH M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York, USA: Wiley, 1999: 486–551.
    [14] CHEN Jingwei, AN Daoxiang, WANG Wu, et al. Extended polar format algorithm for large-scene high-resolution was-SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5326–5338. doi: 10.1109/JSTARS.2021.3081515
    [15] JIA Gaowei, BUCHROITHNER M F, CHANG Wenge, et al. Fourier-based 2-D imaging algorithm for circular synthetic aperture radar: Analysis and application[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(1): 475–489. doi: 10.1109/JSTARS.2015.2502430
    [16] HORN R, NOTTENSTEINER A, REIGBER A, et al. F-SAR—DLR’s new multifrequency polarimetric airborne SAR[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: II-902–II-905.
    [17] PINHEIRO M, PRATS P, SCHEIBER R, et al. Tomographic 3D reconstruction from airborne circular SAR[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: III-21–III-24.
    [18] PONCE O, PRATS-IRAOLA P, PINHEIRO M, et al. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3074–3090. doi: 10.1109/tgrs.2013.2269194
    [19] 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221–242. doi: 10.12000/JR20026

    AN Daoxiang, CHEN Leping, FENG Dong, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221–242. doi: 10.12000/JR20026
    [20] 丁金闪. 视频SAR成像与动目标阴影检测技术[J]. 雷达学报, 2020, 9(2): 321–334. doi: 10.12000/JR20018

    DING Jinshan. Focusing algorithms and moving target detection based on video SAR[J]. Journal of Radars, 2020, 9(2): 321–334. doi: 10.12000/JR20018
    [21] 林赟, 洪文. 圆迹合成孔径雷达成像与应用[M]. 北京: 电子工业出版社, 2020: 1–30.

    LIN Yun and HONG Wen. Circular Synthetic Aperture Radar Imaging and Its Applications[M]. Beijing: Publishing House of Electronics Industry, 2020: 1–30.
    [22] 林赟, 张琳, 韦立登, 等. 无先验模型复杂结构设施SAR全方位三维成像方法研究[J]. 雷达学报, 2022, 11(5): 909–919. doi: 10.12000/JR22148

    LIN Yun, ZHANG Lin, WEI Lideng, et al. Research on full-aspect three-dimensional SAR imaging method for complex structural facilities without prior model[J]. Journal of Radars, 2022, 11(5): 909–919. doi: 10.12000/JR22148
    [23] LIN Yun, HONG Wen, TAN Weixian, et al. Interferometric circular SAR method for three-dimensional imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1026–1030. doi: 10.1109/lgrs.2011.2150732
    [24] 王武. 机载圆周SAR成像及地面动目标指示技术研究[D]. [博士论文], 国防科技大学, 2019.

    WANG Wu. Study on circular SAR imaging and ground moving target indication[D]. [Ph.D. dissertation], National University of Defense Technology, 2019.
    [25] UYSAL F, MURTHY V, and SCARBOROUGH S M. Blind phase calibration for along-track interferometry: Application to gotcha data set[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XXI, Baltimore, USA, 2014: 90930O.
    [26] PAGE D, OWIRKA G, NICHOLS H, et al. Detection and tracking of moving vehicles with gotcha radar systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(1): 50–60. doi: 10.1109/MAES.2014.130075
    [27] HERSEY R K and CULPEPPER E. Radar processing architecture for simultaneous SAR, GMTI, ATR, and tracking[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5.
    [28] DEMING R W, MACINTOSH S, and BEST M. Three-channel processing for improved geo-location performance in SAR-based GMTI interferometry[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XIX, Baltimore, USA, 2012: 83940F.
    [29] DEMING R, BEST M, and FARRELL S. Simultaneous SAR and GMTI using ATI/DPCA[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XXI, Baltimore, USA, 2014: 90930U.
    [30] PILLAI U, LI Keyong, and SCARBOROUGH S M. Geolocation of moving targets in Gotcha data using multimode processing[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore, USA, 2015: 947508.
    [31] PILLAI U, LI Keyong, and SCARBOROUGH S M. Target geolocation in Gotcha data using panoramic processing[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 21–26.
    [32] RAYNAL A M, BICKEL D L, and DOERRY A W. Stationary and moving target shadow characteristics in synthetic aperture radar[C]. SPIE Radar Sensor Technology XVIII, Baltimore, USA, 2014: 90771B.
    [33] WELLS L, SORENSEN K, DOERRY A, et al. Developments in SAR and IFSAR systems and technologies at Sandia National Laboratories[C]. 2003 IEEE Aerospace Conference Proceeding, Big Sky, USA, 2003: 2_1085–2_1095.
    [34] Sandia national laboratories. Pathfinder radar ISR & SAR systems[EB/OL]. https://www.sandia.gov/radar/pathfinder-radar-isr-and-synthetic-aperture-radar-systems/video/.
    [35] DAMINI A, BALAJI B, PARRY C, et al. A videoSAR mode for the x-band wideband experimental airborne radar[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, Orlando, USA, 2010: 76990E.
    [36] CHEN Jingwei, AN Daoxiang, WANG Wu, et al. A novel generation method of high quality video image for high resolution airborne ViSAR[J]. Remote Sensing, 2021, 13(18): 3706. doi: 10.3390/rs13183706
    [37] PALM S, SOMMER R, JANSSEN D, et al. Airborne circular W-band SAR for multiple aspect urban site monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6996–7016. doi: 10.1109/tgrs.2019.2909949
    [38] HENKE D and MEIER E. Tracking and refocussing of moving targets in multichannel SAR data[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 3735–3738.
    [39] SHEN Wenjie, LIN Yun, YU Lingjuan, et al. Single channel circular SAR moving target detection based on logarithm background subtraction algorithm[J]. Remote Sensing, 2018, 10(5): 742. doi: 10.3390/rs10050742
    [40] 聊蕾, 左潇丽, 云涛, 等. 基于图像序列的VideoSAR动目标检测方法[J]. 雷达科学与技术, 2016, 14(6): 563–567, 573. doi: 10.3969/j.issn.1672-2337.2016.06.001

    LIAO Lei, ZUO Xiaoli, YUN Tao, et al. An approach to detect moving target in VideoSAR imagery sequence[J]. Radar Science and Technology, 2016, 14(6): 563–567, 573. doi: 10.3969/j.issn.1672-2337.2016.06.001
    [41] 张营, 朱岱寅, 俞翔, 等. 一种VideoSAR动目标阴影检测方法[J]. 电子与信息学报, 2017, 39(9): 2197–2202. doi: 10.11999/JEIT161394

    ZHANG Ying, ZHU Daiyin, YU Xiang, et al. Approach to moving targets shadow detection for VideoSAR[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2197–2202. doi: 10.11999/JEIT161394
    [42] ZHONG Chao, DING Jinshan, and ZHANG Yuhong. Joint tracking of moving target in single-channel video SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5212718. doi: 10.1109/TGRS.2021.3115491
    [43] QIN Siqi, DING Jinshan, WEN Liwu, et al. Joint track-before-detect algorithm for high-maneuvering target indication in video SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8236–8248. doi: 10.1109/jstars.2021.3104603
    [44] LIU Zhongkang, AN Daoxiang, and HUANG Xiaotao. Moving target shadow detection and global background reconstruction for VideoSAR based on single-frame imagery[J]. IEEE Access, 2019, 7: 42418–42425. doi: 10.1109/ACCESS.2019.2907146
    [45] CHEN Leping, AN Daoxiang, and HUANG Xiaotao. A backprojection-based imaging for circular synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3547–3555. doi: 10.1109/JSTARS.2017.2683497
    [46] CHEN Leping, AN Daoxiang, and HUANG Xiaotao. Resolution analysis of circular synthetic aperture radar noncoherent imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(1): 231–240. doi: 10.1109/TIM.2019.2890932
    [47] WANG Wu, AN Daoxiang, LUO Yuxiao, et al. The fundamental trajectory reconstruction results of ground moving target from single-channel CSAR geometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5647–5657. doi: 10.1109/TGRS.2018.2823310
    [48] LUO Yuxiao, AN Daoxiang, WANG Wu, et al. Local road area extraction in CSAR imagery exploiting improved curvilinear structure detector[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5227615. doi: 10.1109/TGRS.2022.3172227
    [49] LI Jianpeng, AN Daoxiang, WANG Wu, et al. A novel method for single-channel CSAR ground moving target imaging[J]. IEEE Sensors Journal, 2019, 19(19): 8642–8649. doi: 10.1109/JSEN.2019.2912863
    [50] AN Daoxiang, WANG Wu, and ZHOU Zhimin. Refocusing of ground moving target in circular synthetic aperture radar[J]. IEEE Sensors Journal, 2019, 19(19): 8668–8674. doi: 10.1109/JSEN.2019.2922649
    [51] GE Beibei, FAN Chongyi, AN Daoxiang, et al. A novel phase calibration method for dual-channel CSAR-GMTI processing[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 636–640. doi: 10.1109/lgrs.2019.2926436
    [52] GE Beibei, AN Daoxiang, CHEN Leping, et al. Ground moving target detection and trajectory reconstruction methods for multichannel airborne circular SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2900–2915. doi: 10.1109/TAES.2022.3141332
    [53] GE Beibei, AN Daoxiang, LIU Jinyuan, et al. Modified adaptive 2-D calibration algorithm for airborne multichannel SAR-GMTI[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4004805. doi: 10.1109/LGRS.2023.3267148
    [54] 葛蓓蓓. 机载多通道WasSAR运动目标检测与轨迹重构技术研究[D]. [博士论文], 国防科技大学, 2023.

    GE Beibei. Study on moving target detection and trajectory reconstruction methods for airborne multi-channel WasSAR[D]. [Ph.D. dissertation], National University of Defense Technology, 2023.
    [55] TIAN Xiaoqing, LIU Jing, MALLICK M, et al. Simultaneous detection and tracking of moving-target shadows in ViSAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1182–1199. doi: 10.1109/TGRS.2020.2998782
    [56] HENKE D, MAGNARD C, FRIOUD M, et al. Moving-target tracking in single-channel wide-beam SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4735–4747. doi: 10.1109/tgrs.2012.2191561
    [57] HENKE D, DOMINGUEZ E M, SMALL D, et al. Moving target tracking in single- and multichannel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3146–3159. doi: 10.1109/tgrs.2014.2369060
    [58] ZHANG Yun, MU Huilin, JIANG Yicheng, et al. Moving target tracking based on improved GMPHD filter in circular SAR system[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 559–563. doi: 10.1109/LGRS.2018.2878467
    [59] 穆慧琳. 多通道SAR地面运动目标检测与成像研究[D]. [博士论文], 哈尔滨工业大学, 2021.

    MU Huilin. Research on ground moving target detection and imaging in multichannel SAR system[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2021.
    [60] DEMING R W. Along-track interferometry for simultaneous SAR and GMTI: Application to Gotcha challenge data[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery XVIII, Orlando, USA, 2011: 80510P.
    [61] 刘向阳. 机载多通道SAR-GMTI误差分析与补偿方法研究[D]. [博士论文], 西安电子科技大学, 2010.

    LIU Xiangyang. Study on error analysis and compensation for multi-channel airborne SAR-GMTI systems[D]. [Ph.D. dissertation], Xidian University, 2010.
    [62] ENDER J H G. The airborne experimental multi-channel SAR-system AER-II[C]. European SAR Conference, Konigswinter, Germany, 1996: 49–52.
    [63] GIERULL C H. Digital channel balancing of along-track interferometric SAR data[R]. Technical Report DRDC TM 2003-024, 2003.
    [64] SONG Yongping, LOU Jun, and JIN Tian. A novel II-CFAR detector for ROI extraction in SAR image[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), Kunming, China, 2013: 1–4.
    [65] PALM S, MARESCH A, and STILLA U. Investigation on circular mapping by FMCW-SAR on small airplanes[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, 40-1(W-1): 281–286. doi: 10.5194/isprsarchives-XL-1-W1-281-2013
  • 加载中
图(27) / 表(1)
计量
  • 文章访问数:  857
  • HTML全文浏览量:  312
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-11-23
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回