Loading [MathJax]/extensions/TeX/boldsymbol.js

基于快速迭代插值多普勒频率估计的单脉冲前视成像技术

刘可 李悦丽 戴永鹏 金添

张凌志, 刘飞峰, 胡程. 基于导航卫星的干涉SAR数据采集策略优选方法分析[J]. 雷达学报, 2019, 8(5): 624–630. doi: 10.12000/JR19065
引用本文: 刘可, 李悦丽, 戴永鹏, 等. 基于快速迭代插值多普勒频率估计的单脉冲前视成像技术[J]. 雷达学报, 2023, 12(6): 1138–1154. doi: 10.12000/JR23145
ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065
Citation: LIU Ke, LI Yueli, DAI Yongpeng, et al. Monopulse forward-looking imaging based on Doppler estimation using fast iterative interpolated beamforming algorithm[J]. Journal of Radars, 2023, 12(6): 1138–1154. doi: 10.12000/JR23145

基于快速迭代插值多普勒频率估计的单脉冲前视成像技术

DOI: 10.12000/JR23145 CSTR: 32380.14.JR23145
基金项目: 国家部委基金
详细信息
    作者简介:

    刘 可,硕士生,主要研究方向为雷达智能感知与处理

    李悦丽,博士,教授,主要研究方向为机载雷达合成孔径成像、前视成像以及射频干扰抑制技术

    戴永鹏,博士,讲师,主要研究方向为雷达图像处理及 MIMO阵列设计

    金 添,博士,教授,主要研究方向为新体制雷达系统、智能感知与处理

    通讯作者:

    李悦丽 liyueli4uwb@nudt.edu.cn

  • 责任主编:朱岱寅 Corresponding Editor: ZHU Daiyin
  • 中图分类号: TN958.4

Monopulse Forward-looking Imaging Based on Doppler Estimation Using Fast Iterative Interpolated Beamforming Algorithm

Funds: The National Ministries Foundation
More Information
  • 摘要: 在单脉冲前视成像技术中,同分辨单元内多目标的辨识一直是单脉冲雷达的研究热点。尽管多普勒处理可以提高对前斜视多目标的分辨能力,但在真实目标数量未知、强点目标能量泄露的情况下,多普勒频率的精确估计面临巨大挑战。针对以上问题,该文在单脉冲前视成像中引入具有目标个数估计和单快拍处理能力的快速迭代插值波束形成(FIIB)算法,结合信息论准则估计目标个数,实现对多普勒频率的无偏估计。点目标仿真数值分析结果显示,FIIB对于同分辨单元内的目标数估计和参数估计性能优于调频Z变换(CZT)算法,能实现对±5°外点目标的准确估计。场景仿真和实测数据成像结果表明基于FIIB的单脉冲前视成像算法聚焦能力强,图像对比度更高,并能有效抑制背景杂波。

     

  • 基于导航卫星的双基地SAR(Bistatic Synthetic Aperture Radar based on Global Navigation Satellite System, GNSS-BSAR)是空-地双基地SAR中一种典型的应用[1],使用在轨的导航卫星作为发射源,地面部署接收机(地基、车载、机载)构成双基地SAR系统[2]。由于导航星座的日趋完善,其全球覆盖性以及重轨特性所带来的优势是其他照射源暂时所不能替代的,其中以地基接收机为主的导航卫星干涉合成孔径雷达(Interference Synthetic Aperture Radar based on the Global Navigation Satellite System, GNSS-InSAR)在场景形变监测领域有着广阔的应用前景[3],成为了近年来研究热点。

    在GNSS-BSAR系统成像方面,已有研究者分别使用不同的导航卫星星座进行了成像验证,包括了北斗[4,5]、GPS[6]、格洛纳斯[7]、伽利略[8]。除此以外文献[9]还提出了多角度融合方法以增强图像信噪比。在形变监测方面,来自伯明翰大学的学者们[10]使用直达波天线,配合长约50 m的线缆构建了理想点目标,并使用格洛纳斯作为发射源,首次实现了精度约为1 cm的1维形变反演结果。该实验初步验证了GNSS-InSAR应用于形变监测的可行性。为了进一步验证场景形变监测的可能,2017年文献[11]通过对接收机进行高精度移位来模拟场景建筑形变,成功反演出了形变,精度约为1 cm。在3维形变方面,2018年北京理工大学的技术团队[12]通过人为构建转发器,进行了精度可控的强点目标形变模拟,使用我国的北斗IGSO卫星,成功实现了精度优于5 mm的3维形变反演,这些验证性实验充分表明了GNSS-InSAR应用于场景形变检测的可能。

    若要实现GNSS-InSAR场景的3维形变反演,需要同时至少3颗卫星从不同角度照射场景。由于GNSS-InSAR系统的拓扑高度非对称性以及导航信号的窄带特性[13],加上导航卫星的重轨并非是严格意义上的重轨,除了不可避免的空间基线外,重轨时间也并非严格一致,因此在实际数据采集中,需要对系统构型以及数据采集时间进行严格的优化设计。文献[14]提出了一种联合优化方法,解决了面向大场景下的多星多角度构型优化问题,配合多个接收机实现综合分辨性能优异的大场景成像。文献[15]提出了空间去相干的理论描述框架,表明了空间去相干在GNSS-InSAR中的必要性,但未对数据采集时间进行说明。从当前实际情况出发,不精确的数据采集时间可能会造成存储资源浪费,空间去相干导致的数据截取进一步降低了数据有效性。具体如图1所示:

    图  1  数据截取与有效数据示意图
    Figure  1.  Effective data interception diagram

    针对上述问题,本文提出了一种GNSS-InSAR场景连续数据采集优化方法,通过结合当前数据的卫星轨迹和两行星历数据文件(STK Two-Line Element sets, TLE)预测轨迹,基于相干系数轨迹对齐,获取卫星重轨时间间隔,得到最优的数据采集策略,从源头上降低数据的空间去相干性,提升所采集数据有效性,节约存储资源。在第2部分对GNSS-InSAR场景数据采集优化方法进行了详细介绍。第3部分针对提出的方法进行了实验设计,开展了实测数据采集,并针对采集的数据进行了初步分析。第4部分对全文进行总结。

    对于GNSS-InSAR图像而言,经过保相成像处理后,场景中任意一点(x0,y0)的像素信息分别对应分辨单元内所有散射体回波的相参叠加,可建模为

    s(x0,y0)=f(x,y;t)exp[j2πλr(x,y;P)]W(xx0,yy0;P)dxdy+n(x0,y0;t) (1)

    其中,f(x,y;t)为时间t下的地表散射系数,P为对应的合成孔径中心位置矢量,W(x,y;P)表示系统的点扩散函数(PSF), n(x,y;t)为图像的加性噪声。对于SAR图像的同名点像素,其相干系数可表示为[16]

    ρ=sm(x0,y0)ss(x0,y0)dxdysm(x0,y0)sm(x0,y0)dxdyss(x0,y0)ss(x0,y0)dxdy (2)

    其中,下标m表示主图像,s表示辅图像。根据柯西不等式可以判断:0ρ1,当ρ=0时表示同名点完全不相干,当ρ=1时,同名点完全相干。

    将点目标像素模型式(1)带入到式(2)并化简得到

    ρ=sav(x,y)exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(sm(x,y)exp[j2πλr(x,y;Pm)]|W(xx0,yy0;Pm)|2dxdy+nm)×(ss(x,y)exp[+j2πλr(x,y;Ps)]|W(xx0,yy0;Pm)|2dxdy+ns) (3)

    式(3)的推导使用了如下近似:

    (1) 由于导航卫星的高轨道特性,使得W(xx0,yy0;Pm)W(xx0,yy0;Ps)成立;

    (2) 相邻两天的噪声相干系数为0,即

    n(x0,y0;tm)×n(x0,y0;ts)=0 (4)

    (3) 相邻两天的目标散射系数为sav(x,y),即

    sav(x,y)f(x,y;tm)f(x,y;ts) (5)

    对式(3)中的相干系数ρ进一步分解得到

    ρ=ρth×ρti×ρsp (6)

    其中,热噪声相干系数ρth与时间相干系数ρti分别由系统与实际目标决定。

    对于PS点[17]而言,地表散射系数相对稳定,不随时间变化,同时为了便于后续分析,假定散射系数为1得到空间相干系数ρsp的简化式为

    ρsp=exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(|W(xx0,yy0;Pm)|2dxdy)(|W(xx0,yy0;Pm)|2dxdy) (7)

    从式(7)推导结果可以知道,空间基线主要是影响r(x,y;P)从而导致空间去相干。

    导航卫星的重轨时间并非稳定不变,因此需要对数据采集时间进行有效预测,从源头上降低空间去相干,提高数据有效性。

    假定主图像数据采集时间为tm,该采集时间可以通过文献[14]中的广义优化模型进行求解,辅图像数据采集时间为ts=tm+Δt, Δt为时间间隔,那么最优化数据采集模型可通过式(7)推导而来

    Δt=argmax{|˜W(x,y;Pm)|2exp[j2πλ(r(x,y;Pm)r(x,y;P(tm+Δt)))]dxdy} (8)

    其中,˜W(x,y;Pm)tm下等效归一化PSF, P(tm+Δt)Δt时间偏置下得合成孔径中心位置矢量。

    第1天数据采集需要进行实验设计以确定最优数据采集时刻,往后的重轨天数据采集可以根据数据采集优化模型,同时结合星历文件进行预测。整体的预测流程如图2所示,n为任意一天采集的数据,k为重轨天数间隔。

    图  2  GNSS-InSAR数据采集时间优化流程
    Figure  2.  Time optimization process of GNSS-InSAR data acquisition

    实际卫星位置对应的实际时间设为tn,经过模型优化得到的时间偏差为Δt,那么第n+k天对应的实际数据采集时间可表示为

    tn+k=tn+Δt (9)

    对于固定场景的形变监测,首次数据采集的时候需要严格设计系统构型,使分辨率达到最优化。本次实验接收机部署在北京理工大学信息科学试验楼楼顶西北角,实施监测场景位于西偏北30°。使用理论分辨率计算公式[18]对该场景进行分辨率设计。仿真参数具体参见表1

    表  1  数据采集试验仿真参数
    Table  1.  Data acquisition test simulation parameters
    参数
    照射源北斗 IGSO1~5
    PRF1000 Hz
    带宽10.23 MHz
    合成孔径时间600 s
    TLE文件更新日期2019年4月29日
    预定数据采集日期2019年4月30日
    下载: 导出CSV 
    | 显示表格

    以分辨单元面积作为判定依据,得到预定采集日期当天全时段下各个卫星在预定场景下所能得到的分辨单元面积如图3所示。

    图  3  全时段下场景分辨单元面积
    Figure  3.  Scene resolution unit area in full time

    为了实现3维形变反演,需要同一时间下有3颗卫星对场景进行照射。图3中10点前后与17点前后满足当前场景上空有3颗IGSO卫星可见的条件。更进一步,为了使分辨单元面积达到最优,可以得到具体的数据采集时间。具体如图4红框标注,分别是9点30分前后与17点30分前后。

    图  4  首次数据采集时间设计结果
    Figure  4.  Design results of first data acquisition time

    为了配合实验,在场景布置转发器,整体的系统构型如图5所示。

    图  5  GNSS-InSAR场景3维形变反演实验拓扑构型设计结果
    Figure  5.  GNSS-InSAR topological configuration design results of 3D deformation retrieval experiment

    以2019年4月30日采集的实测数据作为第n天数据,对于北斗的IGSO而言,重轨时间约为1天,即m=1,同时下载当天最新的TLE文件。以IGSO1为例,结合图2进行详细说明:

    (1) 使用实测数据的直达波进行卫星位置解算,同时根据TLE文件推算当天和相邻天的卫星轨迹。经过相干系数轨迹匹配之后,得到的轨迹如图6所示。

    图  6  对齐后的TLE卫星轨迹与实测数据卫星轨迹
    Figure  6.  Aligned TLE satellite trajectory and measured data satellite trajectory

    (2) 以匹配得到的TLE卫星轨迹作为参考,对重轨天的TLE卫星轨迹进行数据采集优化模型求解,系统的PSF与优化模型仿真结果分别如图7图8所示。

    图  7  场景[–147, 20, 0]处理论PSF
    Figure  7.  Theoretical PSF in scene at position of [–147, 20, 0]
    图  8  数据采集优化模型仿真结果
    Figure  8.  Simulation results of data acquisition optimization model

    图8的结果分析可知,第1个峰值点为其本身,由于空间基线为0,相干系数为1。第2个峰值点相干系数为0.999644,满足除了第1个峰值点外相邻天相干系数最大值条件,因此第2个峰值点就是最佳重轨时的空间相干系数。此时经过模型优化得到的时间间隔为:Δt=86163s=23h56min3s,结合第1天的实测数据轨迹对应的时间t1=9h26min0s,第2天准确的数据采集时间为:t2=9h22min3s

    为了说明优化结果的正确性,在实验场景中放置转发器模拟理想点目标(图5),同时按照优化后的时间进行5月1日数据采集。实际采集时间为9h21min53s,总采集时间约650 s。相邻两天的空间相干系数轨迹匹配结果如图9所示。

    图  9  实测数据重轨空间相干系数
    Figure  9.  The spatial coherence coefficient of measured data

    图9中峰值点位置来看,重轨数据采集优化模型得到的结果和实际结果相吻合。为了进一步说明,图10给出了IGSO1卫星实测数据成像结果。

    图  10  场景成像结果
    Figure  10.  Imaging results of scene

    对相邻两天的图像相干系数进行求解,得到图11所示结果。在同一坐标系下,仿真目标位于[–147, 20, 0],空间相干系数为0.999644;转发器位于[–147, 20, 0],相干系数为0.9996;两者的相干系数基本保持一致。

    图  11  相干系数结果
    Figure  11.  Coherence coefficient result

    图9图10的结果表明经过数据采集优化模型后得到的时间间隔与实际卫星轨迹的重轨时间相互吻合,在保证600 s预期合成孔径时间下,可以最大限度减少数据采集时间,节约存储资源。同时避免后期由于数据对齐带来的数据有效性降低问题。

    在GNSS-InSAR场景1维/3维形变反演应用中,针对由于导航卫星重轨时间的非严格一致性与有效数据截取带来的数据冗余,数据有效性低等问题,本文提出了一种面向GNSS-InSAR场景数据采集的优化模型,采用实测数据与TLE文件相结合,根据当天数据采集时间,预测相邻天重轨时间,从而实现精确的数据采集。实测数据验证结果表明了数据采集时间优化模型的正确性。该方法的提出有利于GNSS-InSAR场景1维/3维形变反演实验的开展,在降低原始数据冗余度基础上,保证了有效数据时间长度大于预期合成孔径时间。

  • 图  1  机载雷达前视成像几何示意图

    Figure  1.  Geometry for forward-looking imaging of a scanning radar

    图  2  强点目标仿真结果(W1/W2=20dB)

    Figure  2.  Simulation result of strong point targets (W1/W2=20dB)

    图  3  相邻点目标仿真结果 (Δf=1/N)

    Figure  3.  Simulation result of neighboring point targets (Δf=1/N)

    图  4  多点目标仿真结果(L=10)

    Figure  4.  Simulation result of multiple point targets (L=10)

    图  5  不同迭代次数下同多普勒单元内两个目标的FIIB仿真结果

    Figure  5.  Simulation results of FIIB for two targets situated in a Doppler bin by different iterations

    图  6  点阵目标单脉冲前视成像效果对比

    Figure  6.  Comparison of forward-looking imaging performance

    图  7  距离向1700 m处目标方位向剖面图

    Figure  7.  Azimuthal contour plots for point targets at the range cell 1700 m

    图  8  仿真场景前视成像效果对比

    Figure  8.  Comparison of simulation results in forward-looking imaging

    图  9  实测数据前视成像效果对比

    Figure  9.  Comparison of experimental results in forward-looking imaging

    1  FIIB算法估计多普勒频率流程[18]

    1.   Flowchart of Doppler frequency estimation based on FIIB algorithm[18]

     初始化:
      令 ˆfl=0, ˆAl=0, l=1,2,,L
      设 q=0
      {\boldsymbol{X}} = {\text{FFT}}({\boldsymbol{x}},N)
     迭代(Q次):
      对于 l = 1,2, \cdots ,L
       IF q = 1(粗估计):
        \tilde X(k) = X(k) - \displaystyle\sum \limits_{i = 1,i \ne l}^L {\hat A_i}{\hat S_i}(k),k = 0,1, \cdots ,N - 1 (i)
         {\hat m_l} =\arg \mathop{\max}\limits_{0 \le k \le N - 1 } {\left| {\tilde X(k)} \right|^2}           (ii)
        {\hat f_l} = \dfrac{1}{N}{\hat m_l}                   (iii)
       END IF
       (精估计):
         {\tilde X_p}({\hat f_l}) = {X_p}({\hat f_l}) - \displaystyle\sum \limits_{i = 1,i \ne l}^L {\hat A_i}{\hat S_i} \left( {{{\hat f}_l} + \dfrac{p}{N}} \right),p = \pm \dfrac{1}{2}  (iv)
        其中, {X_p}({\hat f_l}) = X\left( {{{\hat f}_l} + \dfrac{p}{N}} \right)          (v)
         \delta = \dfrac{1}{2}{{\mathrm{Re}}} \left[ {\dfrac{{{{\tilde X}_{0.5}}({{\hat f}_l}) + {{\tilde X}_{ - 0.5}}({{\hat f}_l})}}{{{{\tilde X}_{0.5}}({{\hat f}_l}) - {{\tilde X}_{ - 0.5}}({{\hat f}_l})}}} \right]        (vi)
        {\hat f_l} \leftarrow {\hat f_l} + \dfrac{\delta }{N}                 (vii)
         {\hat A_l} = \dfrac{1}{N} \left\{ {\displaystyle\sum \limits_{k = 0}^{N - 1} x(k){{\text{e}}^{ - {\text{j}}{\textstyle\frac{{2\pi }}{N}}k{{\hat f}_l}}} - \displaystyle\sum \limits_{i = 1,i \ne l}^L {{\hat A}_i}{{\hat S}_i}({{\hat f}_l})} \right\} (viii)
      q \leftarrow q + 1
     输出: \left\{ {{{\hat f}_l},{{\hat A}_l}} \right\},l = 1,2, \cdots ,L
    下载: 导出CSV

    2  具有目标个数估计功能的FIIB算法

    2.   The FIIB algorithm with model order estimation

     初始化:
      设 {L_{\max }}, Q
     循环:
      对于 L = 1,2, \cdots ,{L_{\max }}
       \left\{ {{{\hat f}_l},{A_l}} \right\}_{l = 1}^L = {\text{FIIB(}}{\boldsymbol{x}},L,Q)
       计算 {C_{{\text{ITC}}}}(L)
      结束
     取: \hat{L}=\mathrm{arg}\mathop{ \mathrm{max}}\limits_{L=1,2,\cdots, {L}_{\mathrm{max}} }\{{C}_{\text{ITC}}(L)\}
     输出: \hat L,\{ {\hat f_l},{\hat A_l}\} ,l = 1,2, \cdots ,\hat L
    下载: 导出CSV

    表  1  点目标仿真参数

    Table  1.   Simulation parameters of point targets

    参数 数值 参数 数值
    频率值{f_1} 0.2687 信号长度N 64
    复振幅{A_1} 5.0000+3.0000j 迭代次数Q 10
    频率值{f_2} 0.3000 设定最大目标数{L_{\max}} 5
    复振幅{A_2} 0.5000–0.3000j 信噪比\rho (dB) 20
    下载: 导出CSV

    表  2  强点目标参数估计结果({\boldsymbol{W}}_{\bf{1}}/{\boldsymbol{W}}_{\bf{2}} =20 dB)

    Table  2.   Estimation result of strong point targets (W1/W2=20 dB)

    参数 方法 目标1 目标2 假目标 假目标 假目标 假目标
    频率 True 0.2687 0.3000 / / / /
    FIIB 0.2687 0.3000 / / / /
    CZT 0.2689 0.2737 0.2578 0.2912 0.3063 0.3232
    FFT 0.2656 / / / / /
    复振幅 True 5.0000+3.0000j 0.5000–0.3000j / / / /
    FIIB 4.9906+3.0169j 0.4905–0.3066j / / / /
    CZT 4.9230+3.1262j 4.6314–1.8004j –1.8767+0.8188j 1.0581–0.5353 0.5413–0.8405j 0.3429–0.4851j
    FFT 2.2325+5.0000j / / / / /
    下载: 导出CSV

    表  3  相邻点目标参数估计结果({\boldsymbol{\Delta}} {\boldsymbol{f}} = {\bf{1}}/{\boldsymbol{N}})

    Table  3.   Estimation result of neighboring point targets ({\boldsymbol{\Delta}} {\boldsymbol{f}} = {\bf{1}}/{\boldsymbol{N}})

    参数 方法 目标1 目标2 假目标 假目标 假目标 假目标
    频率 True 0.2844 0.3000 / / / /
    FIIB 0.2844 0.3000 / / / /
    CZT 0.2828 0.3021 0.3049 0.2734 0.3227 0.2550
    FFT 0.2813 0.2969 / / / /
    复振幅 True 5.0000+3.0000j 5.0000–3.0000j / / / /
    FIIB 4.9852+3.0081j 4.9980–3.0238j / / / /
    CZT 4.1085+4.3364j 4.1257–4.3441j 1.5993–5.3751j –1.9113+1.6013j 0.2152–1.7055j –0.5516+0.9638j
    FFT 3.0812+5.0246j 4.9664–0.8527j / / / /
    下载: 导出CSV

    表  4  不同迭代次数下同多普勒单元内两个目标的FIIB参数估计结果

    Table  4.   Estimation result of FIIB for two targets situated in a Doppler bin by different iterations

    迭代次数Q {f_1} {f_2} {A_1} {A_2}
    50 0.2899 0.2980 2.4221+2.4827j 7.3413–2.0001j
    100 0.2915 0.2994 4.0880+2.9784j 5.9220–2.9249j
    200 0.2920 0.2999 4.7896+2.9998j 5.2107–2.9917j
    300 0.2922 0.3000 4.9617+2.9887j 5.0442–2.9834j
    (真实值) 0.2922 0.3000 5.0000+3.0000j 5.0000–3.0000j
    下载: 导出CSV

    表  5  前视扫描成像实验仿真参数

    Table  5.   Simulation parameters of a forward-looking scanning radar

    参数 数值 参数 数值
    平台飞行速度(m/s) 100 场景中心地距(m) 1700
    雷达中心频率(GHz) 18 距离×方位分辨单元 (m×m) 3×3
    信号带宽(MHz) 50 和通道3 dB波束宽度(°) 5
    信号脉宽(μs) 1 波束扫描范围(°) –15~15
    脉冲重复频率PRF (Hz) 2000 天线扫描速度(°/s) 30
    下载: 导出CSV

    表  6  场景仿真不同方法的定量评价

    Table  6.   Quantitative evaluation of different methods of scenario simulation

    方法MSEC
    传统单脉冲前视成像0.0066351.4994
    基于CZT重建多普勒估计的单脉冲成像0.0039452.3441
    基于FIIB重建多普勒估计的单脉冲成像0.00387 59.7068
    下载: 导出CSV

    表  7  实测数据不同方法的定量评价

    Table  7.   Quantitative evaluation of different methods of real data

    方法 {\text{ENT}} C
    实孔径图像4.2660411.9599
    传统单脉冲前视成像{\text{3}}{\text{.6825}}213.4888
    基于CZT重建多普勒估计的单脉冲成像3.5228233.1903
    基于FIIB重建多普勒估计的单脉冲成像2.9651292.8872
    下载: 导出CSV
  • [1] 李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119

    LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119
    [2] CHEN Hongmeng, LI Yachao, GAO Wenquan, et al. Bayesian forward-looking superresolution imaging using Doppler deconvolution in expanded beam space for high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105113. doi: 10.1109/TGRS.2021.3107717
    [3] LI Yueli, LIU Jianguo, JIANG Xiaoqing, et al. Angular superresol for signal model in coherent scanning radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3103–3116. doi: 10.1109/TAES.2019.2900133
    [4] 马佳智, 施龙飞, 徐振海, 等. 单脉冲雷达多点源参数估计与抗干扰技术进展[J]. 雷达学报, 2019, 8(1): 125–139. doi: 10.12000/JR18093

    MA Jiazhi, SHI Longfei, XU Zhenhai, et al. Overview of multi-source parameter estimation and jamming mitigation for monopulse radars[J]. Journal of Radars, 2019, 8(1): 125–139. doi: 10.12000/JR18093
    [5] 吴迪, 杨成杰, 朱岱寅, 等. 一种用于单脉冲成像的自聚焦算法[J]. 电子学报, 2016, 44(8): 1962–1968. doi: 10.3969/j.issn.0372-2112.2016.08.027

    WU Di, YANG Chengjie, ZHU Daiyin, et al. An autofocusing algorithm for monopulse imaging[J]. Acta Electronica Sinica, 2016, 44(8): 1962–1968. doi: 10.3969/j.issn.0372-2112.2016.08.027
    [6] 吴迪, 朱岱寅, 田斌, 等. 单脉冲成像算法性能分析[J]. 航空学报, 2012, 33(10): 1905–1914.

    WU Di, ZHU Daiyin, TIAN Bin, et al. Performance evaluation for Monopulse imaging algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1905–1914.
    [7] 胡艳芳, 陈伯孝, 吴传章. 基于单脉冲三维成像的抗交叉眼干扰方法[J]. 系统工程与电子技术, 2022, 44(4): 1188–1194. doi: 10.12305/j.issn.1001-506X.2022.04.15

    HU Yanfang, CHEN Baixiao, and WU Chuanzhang. Anti-cross-eye jamming method based on monopulse radar 3-D imaging[J]. Systems Engineering and Electronics, 2022, 44(4): 1188–1194. doi: 10.12305/j.issn.1001-506X.2022.04.15
    [8] LONG Teng, LU Zheng, DING Zegang, et al. A DBS Doppler centroid estimation algorithm based on entropy minimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3703–3712. doi: 10.1109/TGRS.2011.2142316
    [9] CHEN Hongmeng, LI Ming, WANG Zeyu, et al. Cross-range resolution enhancement for DBS imaging in a scan mode using aperture-extrapolated sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1459–1463. doi: 10.1109/LGRS.2017.2710082
    [10] 马长征, 张守宏. 超分辨在单脉冲雷达三维成像中的应用[J]. 西安电子科技大学学报, 1999, 26(3): 379–382. doi: 10.3969/j.issn.1001-2400.1999.03.027

    MA Changzheng and ZHANG Shouhong. Applications of super-resolution signal processing on monopulse radar three dimensional imaging[J]. Journal of Xidian University, 1999, 26(3): 379–382. doi: 10.3969/j.issn.1001-2400.1999.03.027
    [11] 李悦丽, 马萌恩, 赵崇辉, 等. 基于单脉冲雷达和差通道多普勒估计的前视成像[J]. 雷达学报, 2021, 10(1): 131–142. doi: 10.12000/JR20111

    LI Yueli, MA Meng’en, ZHAO Chonghui, et al. Forward-looking imaging via Doppler estimates of sum-difference measurements in scanning monopulse radar[J]. Journal of Radars, 2021, 10(1): 131–142. doi: 10.12000/JR20111
    [12] STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5): 720–741. doi: 10.1109/29.17564
    [13] SHAH S M, SAMAR R, KHAN N M, et al. Fractional-order adaptive signal processing strategies for active noise control systems[J]. Nonlinear Dynamics, 2016, 85(3): 1363–1376. doi: 10.1007/s11071-016-2765-6
    [14] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [15] 叶沙琳, 张永, 杨桃丽, 等. 基于稀疏空间谱估计的星载SAR DBF算法[J]. 上海航天, 2018, 35(6): 65–70. doi: 10.19328/j.cnki.1006-1630.2018.06.011

    YE Shalin, ZHANG Yong, YANG Taoli, et al. An algorithm for spaceborne SAR DBF based on sparse spatial spectrum estimation[J]. Aerospace Shanghai, 2018, 35(6): 65–70. doi: 10.19328/j.cnki.1006-1630.2018.06.011
    [16] LI Feng, GAO Yunpeng, CAO Yijia, et al. Improved teager energy operator and improved Chirp-Z transform for parameter estimation of voltage flicker[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 245–253. doi: 10.1109/TPWRD.2015.2448943
    [17] WANG Kai, WANG Lanlan, YAN Bao, et al. Efficient frequency estimation algorithm based on Chirp-Z transform[J]. IEEE Transactions on Signal Processing, 2022, 70: 5724–5737. doi: 10.1109/TSP.2022.3224648
    [18] ABOUTANIOS E, HASSANIEN A, AMIN M G, et al. Fast iterative interpolated beamforming for accurate single-snapshot DOA estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 574–578. doi: 10.1109/LGRS.2017.2661315
    [19] 许可, 王玲, 万建伟. 信号处理仿真实验[M]. 2版. 北京: 清华大学出版社, 2020: 106–107.

    XU Ke, WANG Ling, and WAN Jianwei. Emulation for Signal Processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2020: 106–107.
    [20] 柏果, 程郁凡, 唐万斌. 基于两阶段加窗插值的多音信号频率估计算法[J]. 电子科技大学学报, 2021, 50(5): 682–688. doi: 10.12178/1001-0548.2021066

    BAI Guo, CHENG Yufan, and TANG Wanbin. Frequency estimation of multi-tone by two-stage windowed interpolation[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(5): 682–688. doi: 10.12178/1001-0548.2021066
    [21] 杨超, 李波, 胡绪权, 等. 基于迭代离散时间傅里叶变换插值的高精度频率估计[J]. 电网技术, 2021, 45(10): 3955–3963. doi: 10.13335/j.1000-3673.pst.2020.2285

    YANG Chao, LI Bo, HU Xuquan, et al. High-precision frequency estimation based on iterative DTFT interpolation[J]. Power System Technology, 2021, 45(10): 3955–3963. doi: 10.13335/j.1000-3673.pst.2020.2285
    [22] YE Shanglin and ABOUTANIOS E. An algorithm for the parameter estimation of multiple superimposed exponentials in noise[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 2015: 3457–3461.
    [23] ABOUTANIOS E. On the convergence of the fast iterative interpolated beamformer[C]. The 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 630–634.
    [24] HASSANIEN A and ABOUTANIOS E. Single-snapshot beamforming using fast iterative adaptive techniques[C]. The 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–4.
    [25] MILLS K R, AHMAD F, and ABOUTANIOS E. Coarray-domain iterative direction-of-arrival estimation with coprime arrays[J]. Digital Signal Processing, 2022, 122: 103332. doi: 10.1016/j.dsp.2021.103332
    [26] ABOUTANIOS E and HASSANIEN A. Low-cost beamforming-based DOA estimation with model order determination[C]. The 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5.
    [27] LIU F, ZHAO F, YU W, et al. Ship detection and speed estimation based on azimuth scanning mode of synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2012, 6(6): 425–431. doi: 10.1049/iet-rsn.2011.0139
    [28] SHERMAN S M, BARTON D K, 周颖, 陈远征, 赵锋, 等译. 单脉冲测向原理与技术[M]. 2版. 北京: 国防工业出版社, 2013: 172–197.

    SHERMAN S M, BARTON D K, ZHOU Ying, CHEN Yuanzheng, ZHAO Feng, et al. translation. Monopulse Principles and Techniques[M]. 2nd ed. Beijing: National Defense Industry Press, 2013: 172–197.
    [29] ABOUTANIOS E and MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237–1242. doi: 10.1109/TSP.2005.843719
    [30] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716–723. doi: 10.1109/TAC.1974.1100705
    [31] ABOUTANIOS E. Frequency estimation for low earth orbit satellites[D]. [Ph.D. dissertation], University of Technology, 2002: 178–205.
    [32] WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366
    [33] ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Fast entropy minimization based autofocusing technique for ISAR imaging[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3425–3434. doi: 10.1109/TSP.2015.2422686
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数: 587
  • HTML全文浏览量: 254
  • PDF下载量: 219
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-12-08
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2023-12-28

目录

/

返回文章
返回